Skip to main content

Noncoding RNAs in the Development, Function and Pathologies of the Central Nervous System

  • Chapter
  • First Online:
Therapeutic Ribonucleic Acids in Brain Tumors

Abstract

Noncoding RNAs (ncRNAs) are now recognized as important components of regulatory networks governing gene expression in all organisms. In mammals ncRNAs have been shown to regulate many key processes associated with the development and maintenance of specific gene expression profiles. In the nervous system many various classes of ncRNAs play a role in neural cells differentiation and activity. Aberrant expression of noncoding transcripts in the cells of the nervous system is often associated with severe disorders involving neurodegenerative diseases, psychiatric conditions and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelson JF, Kwan KY, O'Roak BJ et al (2005) Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science 310:317–320

    Article  CAS  PubMed  Google Scholar 

  • Allen TA, Von Kaenel S, Goodrich JA et al (2004) The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat Struct Mol Biol 11:816–821

    Article  CAS  PubMed  Google Scholar 

  • Ashraf SI, McLoon AL, Sclarsic SM et al (2006) Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124:191–205

    Article  CAS  PubMed  Google Scholar 

  • Ballas N, Mandel G (2005) The many faces of REST oversee epigenetic programming of neuronal genes. Curr Opin Neurobiol 15:500–506

    Article  CAS  PubMed  Google Scholar 

  • Bertram L, Tanzi RE (2008) Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 9:768–778

    Article  CAS  PubMed  Google Scholar 

  • Beveridge NJ, Tooney PA, Carroll AP et al (2008) Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet 17:1156–1168

    Article  CAS  PubMed  Google Scholar 

  • Brodersen P, Voinnet O (2009) Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 10:141–148

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–1966

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004

    Article  CAS  PubMed  Google Scholar 

  • Carninci P, Hayashizaki Y (2007) Noncoding RNA transcription beyond annotated genes. Curr Opin Genet Dev 17:139–144

    Article  CAS  PubMed  Google Scholar 

  • Cawley S, Bekiranov S, Ng HH et al (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116:499–509

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Rajewsky N (2008) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8:93–103

    Article  CAS  Google Scholar 

  • Chen Y, Liu W, Chao T et al (2008) MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett 272:197–205

    Article  CAS  PubMed  Google Scholar 

  • Chendrimada TP, Finn KJ, Ji X et al (2007) MicroRNA silencing through RISC recruitment of eIF6. Nature 447:823–828

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Kapranov P, Drenkow J et al (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308:1149–1154

    Article  CAS  PubMed  Google Scholar 

  • Ciafre SA, Galardi S, Mangiola A et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351–1358

    Article  CAS  PubMed  Google Scholar 

  • Cole KA, Attiyeh EF, Mosse YP et al (2008) A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res 6:735–742

    Article  CAS  PubMed  Google Scholar 

  • Core LJ, Waterfall JJ, Lis JT (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322:1845–1848

    Article  CAS  PubMed  Google Scholar 

  • Corsten MF, Miranda R, Kasmieh R et al (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67:8994–9000

    Article  CAS  PubMed  Google Scholar 

  • Erwin JA, Lee JT (2008) New twists in X-chromosome inactivation. Curr Opin Cell Biol 20:349–355

    Article  CAS  PubMed  Google Scholar 

  • Esquela-Kerscher A, Slack FJ (2006) Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  CAS  PubMed  Google Scholar 

  • Faghihi MA, Modarresi F, Khalil AM et al (2008) Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 14:723–730

    Article  CAS  PubMed  Google Scholar 

  • Ferretti E, De Smaele E, Po A et al (2009) MicroRNA profiling in human medulloblastoma. Int J Cancer 124:568–577

    Article  CAS  PubMed  Google Scholar 

  • Fontana L, Fiori ME, Albini S et al (2008) Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS ONE 3:e2236

    Article  PubMed  CAS  Google Scholar 

  • Gillies JK, Lorimer IA (2007) Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 6:2005–2009

    Article  CAS  PubMed  Google Scholar 

  • Giraldez AJ, Cinalli RN, Glasner ME et al (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308:833–838

    Article  CAS  PubMed  Google Scholar 

  • Godlewski J, Nowicki MO, Bronisz A et al (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68:9125–9130

    Article  CAS  PubMed  Google Scholar 

  • Greco SJ, Rameshwar P (2007) MicroRNAs regulate synthesis of the neurotransmitter substance P in human esenchymal stem cell-derived neuronal cells. Proc Natl Acad Sci USA 104:15484–15489

    Article  CAS  PubMed  Google Scholar 

  • Guttman M, Amit I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227

    Article  CAS  PubMed  Google Scholar 

  • Hatchell EC, Colley SM, Beveridge DJ et al (2006) SLIRP, a small SRA binding protein, is a nuclear receptor corepressor. Mol Cell 22:657–668

    Article  CAS  PubMed  Google Scholar 

  • Hayashita Y, Osada H, Tatematsu Y et al (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65:9628–9632

    Article  CAS  PubMed  Google Scholar 

  • He Y, Vogelstein B, Velculescu VE et al (2008) The antisense transcriptomes of human cells. Science 322:1855–1857

    Article  CAS  PubMed  Google Scholar 

  • Hebert SS, Horre K, Nicolai L et al (2008a) MicroRNA regulation of Alzheimer's Amyloid precursor protein expression. Neurobiol Dis doi:10.1016/j.nbd.2008.11.009

    Google Scholar 

  • Hebert SS, Horre K, Nicolai L et al (2008b) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci USA 105:6415–6420

    Article  CAS  PubMed  Google Scholar 

  • Hobert O (2008) Regulatory logic of neuronal diversity: terminal selector genes and selector motifs. Proc Natl Acad Sci USA 105:20067–20071

    Article  CAS  PubMed  Google Scholar 

  • Hon LS, Zhang Z (2007) The roles of binding site arrangement and combinatorial targeting in microRNA repression of gene expression. Genome Biol 8:R166

    Article  PubMed  CAS  Google Scholar 

  • Horike S, Mitsuya K, Meguro M et al (2000) Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome. Hum Mol Genet 9:2075–2083

    Article  CAS  PubMed  Google Scholar 

  • Imamura T, Miyauchi-Senda N, Tanaka S et al (2004a) Identification of genetic and epigenetic similarities of SPHK1/Sphk1 in mammals. J Vet Med Sci 66:1387–1393

    Article  CAS  PubMed  Google Scholar 

  • Imamura T, Yamamoto S, Ohgane J et al (2004b) Non-coding RNA directed DNA demethylation of Sphk1 CpG island. Biochem Biophys Res Commun 322:593–600

    Article  CAS  PubMed  Google Scholar 

  • Johnson R, Teh CH, Jia H et al (2009) Regulation of neural macroRNAs by the transcriptional repressor REST. RNA 15:85–96

    Article  CAS  PubMed  Google Scholar 

  • Kanduri C, Thakur N, Pandey RR (2006) The length of the transcript encoded from the Kcnq1ot1 antisense promoter determines the degree of silencing. EMBO J 25:2096–2106

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Inoue K, Ishii J et al (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317:1220–1224

    Article  CAS  PubMed  Google Scholar 

  • Kiriakidou M, Tan GS, Lamprinaki S et al (2007) An mRNA m(7)G cap binding-like motif within human Ago2 represses translation. Cell 129:1141–1151

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Takashima A, Anzai K (1998) The dendritic translocation of translin protein in the form of BC1 RNA protein particles in developing rat hippocampal neurons in primary culture. Biochem Biophys Res Commun 253:448–453

    Article  CAS  PubMed  Google Scholar 

  • Korneev SA, Korneeva EI, Lagarkova MA et al (2008) Novel noncoding antisense RNA transcribed from human anti-NOS2A locus is differentially regulated during neuronal differentiation of embryonic stem cells. RNA 14:2030–2037

    Article  CAS  PubMed  Google Scholar 

  • Krichevsky AM, Gabriely G (2009) miR-21: a small multi-faceted RNA. J Cell Mol Med 13:39–53

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara T, Hsieh J, Nakashima K et al (2004) A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116:779–793

    Article  CAS  PubMed  Google Scholar 

  • Lanz RB, McKenna NJ, Onate SA et al (1999) A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97:7–27

    Article  Google Scholar 

  • Lanz RB, Razani B, Goldberg AD et al (2002) Distinct RNA motifs are important for coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA). Proc Natl Acad Sci USA 99:16081–16086

    Article  CAS  PubMed  Google Scholar 

  • Lapidot M, Pilpel Y (2006) Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms. EMBO Rep 7:1216–1222

    Article  CAS  PubMed  Google Scholar 

  • Lein ES, Hawrylycz MJ, Ao N et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Thomson JM, Wong HY et al (2007) Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 310:442–453

    Article  CAS  Google Scholar 

  • Luedi PP, Hartemink AJ, Jirtle RL (2005) Genome-wide prediction of imprinted murine genes. Genome Res 15:875–884

    Article  CAS  PubMed  Google Scholar 

  • Lukiw WJ (2007) MicroRNA speciation in fetal, adult and Alzheimer's disease hippocampus. Neuroreport 18:297–300

    Article  CAS  PubMed  Google Scholar 

  • Makeyev EV, Zhang J, Carrasco MA et al (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448

    Article  CAS  PubMed  Google Scholar 

  • Mancini-Dinardo D, Steele SJ, Levorse JM et al (2006) Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev 20:1268–1282

    Article  CAS  PubMed  Google Scholar 

  • Maris JM, Hogarty MD, Bagatell R et al (2007) Neuroblastoma. Lancet 369:2106–2120

    Article  CAS  PubMed  Google Scholar 

  • Mathieu O, Bender J (2004) RNA-directed DNA methylation. J Cell Sci 117:4881–4888

    Article  CAS  PubMed  Google Scholar 

  • Medina PP, Slack FJ (2008) microRNAs and cancer: an overview. Cell Cycle 7:2485–2492

    Article  CAS  PubMed  Google Scholar 

  • Mendell JT (2008) miRiad roles for the miR-17–92 cluster in development and disease. Cell 133:217–222

    Article  CAS  PubMed  Google Scholar 

  • Morris KV, Chan SW, Jacobsen SE et al (2004) Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305:1289–1292

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Sakaue H, Nishizawa A et al (2008) PDK1 regulates cell proliferation and cell cycle progression through control of cyclin D1 and p27Kip1 expression. J Biol Chem 283:17702–17711

    Article  CAS  PubMed  Google Scholar 

  • Napoli I, Mercaldo V, Boyl PP et al (2008) The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell 134:1042–1054

    Article  CAS  PubMed  Google Scholar 

  • Nguyen VT, Kiss T, Michels AA et al (2001) 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414:322–325

    Article  CAS  PubMed  Google Scholar 

  • Packer AN, Xing Y, Harper SQ et al (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. J Neurosci 28:14341–14346

    Article  CAS  PubMed  Google Scholar 

  • Papagiannakopoulos T, Shapiro A, Kosik KS (2008) MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 68:8164–8172

    Article  CAS  PubMed  Google Scholar 

  • Peters J, Beechey C (2004) Identification and characterisation of imprinted genes in the mouse. Brief Funct Genomic Proteomic 2:320–333

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer S, Zavolan M, GrĂ€sser FA et al (2004) Identification of virus-encoded microRNAs. Science 304:734–736

    Article  CAS  PubMed  Google Scholar 

  • Pillai RS, Bhattacharyya SN, Artus CG et al (2005) Inhibition of translational initiation by Let-7 microRNA in human cells. Science 309:1573–1576

    Article  CAS  PubMed  Google Scholar 

  • Pillai RS, Bhattacharyya SN, Filipowicz W (2007) Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 17:118–126

    Article  CAS  PubMed  Google Scholar 

  • Ponjavic J, Ponting CP, Lunter G (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17:556–565

    Article  CAS  PubMed  Google Scholar 

  • Preker P, Nielsen J, Kammler S et al (2008) RNA exosome depletion reveals transcription upstream of active human promoters. Science 322:1851–1854

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez A, Griffiths-Jones S, Ashurst JL et al (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910

    Article  CAS  PubMed  Google Scholar 

  • Rovelet-Lecrux A, Hannequin D, Raux G et al (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38:24–26

    Article  CAS  PubMed  Google Scholar 

  • Royo H, CavaillĂ© J (2008) Non-coding RNAs in imprinted gene clusters. Biol Cell 100:149–166

    Article  CAS  PubMed  Google Scholar 

  • Runte M, Huttenhofer A, Gross S et al (2001) The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum Mol Genet 10:2687–2700

    Article  CAS  PubMed  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA et al (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289

    Article  CAS  PubMed  Google Scholar 

  • Seila AC, Calabrese JM, Levine SS et al (2008) Divergent transcription from active promoters. Science 322:1849–1851

    Article  CAS  PubMed  Google Scholar 

  • Sevignani C, Calin GA, Nnadi SC et al (2007) MicroRNA genes are frequently located near mouse cancer susceptibility loci. Proc Natl Acad Sci USA 104:8017–8022

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Downes M, Xie W et al (2001) SHARP, an inducible cofactor that integrates nuclear receptor repression and activation. Genes Dev 15:1140–1151

    Article  CAS  PubMed  Google Scholar 

  • Shiota K (2004) DNA methylation profiles of CpG islands for cellular differentiation and development in mammals. Cytogenet Genome Res 105:325–334

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Kagalwala MN, Parker-Thornburg J et al (2008) REST maintains self-renewal and pluripotency of embryonic stem cells. Nature 453:223–227

    Article  CAS  PubMed  Google Scholar 

  • Skaletsky H, Kuroda-Kawaguchi T, Minx PJ et al (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423:825–837

    Article  CAS  PubMed  Google Scholar 

  • Sleutels F, Zwart R, Barlow DP (2002) The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415:810–813

    CAS  PubMed  Google Scholar 

  • Szymanski M, Barciszewska MZ, Erdmann VA et al (2005) A new frontier for molecular medicine: noncoding RNAs. Biochim Biophys Acta 1756:65–75

    CAS  PubMed  Google Scholar 

  • Teixeira FK, Heredia F, Sarazin A et al (2009) A role for RNAi in the selective correction of DNA methylation defects. Science 323:1600–1604

    Article  CAS  PubMed  Google Scholar 

  • Theuns J, Brouwers N, Engelborghs S et al (2006) Promoter mutations that increase amyloid precursor-protein expression are associated with Alzheimer disease. Am J Hum Genet 78:936–946

    Article  CAS  PubMed  Google Scholar 

  • Tiedge H, Chen W, Brosius J (1993) Primary structure, neural-specific expression, and dendritic location of human BC200 RNA. J Neurosci 13:2382–2390

    CAS  PubMed  Google Scholar 

  • Tochitani S, Hayashizaki Y (2008) Nkx2.2 antisense RNA overexpression enhanced oligodendrocytic differentiation. Biochem Biophys Res Commun 372:691–696

    Article  CAS  PubMed  Google Scholar 

  • Tong AW, Nemunaitis J (2008) Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? Cancer Gene Ther 15:341–355

    Article  CAS  PubMed  Google Scholar 

  • Turner JD, Schote AB, Macedo JA et al (2006) Tissue specific glucocorticoid receptor expression, a role for alternative first exon usage? Biochem Pharmacol 72:1529–1537

    Article  CAS  PubMed  Google Scholar 

  • Ubeda F, Wilkins JF (2008) Imprinted genes and human disease: an evolutionary perspective. Adv Exp Med Biol 626:101–115

    Article  CAS  PubMed  Google Scholar 

  • Umlauf D, Goto Y, Cao R et al (2004) Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat Genet 36:1296–1300

    Article  CAS  PubMed  Google Scholar 

  • Vitali P, Basyuk E, Le Meur E et al (2005) ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs. J Cell Biol 169:745–753

    Article  CAS  PubMed  Google Scholar 

  • Vo N, Klein ME, Varlamova O et al (2005) A cAMP-response element-binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci USA 102:16426–16431

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Iacoangeli A, Lin D et al (2005) Dendritic BC1 RNA in translational control mechanisms. J Cell Biol 171:811–821

    Article  CAS  PubMed  Google Scholar 

  • Wang G, van der Walt JM, Mayhew G et al (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 82:283–289

    Article  CAS  PubMed  Google Scholar 

  • Wayman GA, Davare M, Ando H et al (2008) An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci USA 1059093–1059098

    Google Scholar 

  • Weiss A, Keshet I, Razin A et al (1996) DNA demethylation in vitro: involvement of RNA. Cell 86:709–718

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki Y, Kayashima T, Soejima H et al (2005) Neuron-specific relaxation of Igf2r imprinting is associated with neuron-specific histone modifications and lack of its antisense transcript Air. Hum Mol Genet 14:2511–2520

    Article  CAS  PubMed  Google Scholar 

  • Yang PK, Kuroda MI (2007) Noncoding RNAs and intranuclear positioning in monoallelic gene expression. Cell 128:777–786

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Zhu Q, Luo K et al (2001) The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414:317–322

    Article  CAS  PubMed  Google Scholar 

  • Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596

    Article  CAS  PubMed  Google Scholar 

  • Yik JH, Chen R, Nishimura R et al (2003) Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol Cell 12:971–982

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Ryan DG, Getsios S et al (2008) MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. Proc Natl Acad Sci USA 105:19300–19305

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y (2006) Principles of micro-RNA production and maturation. Oncogene 25:6156–6162

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej SzymaƄski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

SzymaƄski, M., Barciszewski, J. (2009). Noncoding RNAs in the Development, Function and Pathologies of the Central Nervous System. In: Erdmann, V., Reifenberger, G., Barciszewski, J. (eds) Therapeutic Ribonucleic Acids in Brain Tumors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00475-9_20

Download citation

Publish with us

Policies and ethics