Skip to main content

Reflection Positivity and Phase Transitions in Lattice Spin Models

  • Chapter
  • First Online:
Book cover Methods of Contemporary Mathematical Statistical Physics

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1970))

Abstract

Phase transitions are one of the most fascinating, and also most perplexing, phenomena in equilibrium statistical mechanics. On the physics side, many approximate methods to explain or otherwise justify phase transitions are known but a complete mathematical understanding is available only in a handful of simplest of all cases. One set of tractable systems consists of the so called lattice spin models. Originally, these came to existence as simplified versions of (somewhat more realistic) models of crystalline materials in solid state physics but their versatile nature earned them a life of their own in many other disciplines where complex systems are of interest.

The present set of notes describes one successful mathematical approach to phase transitions in lattice spin models which is based on the technique of reflection positivity. This technique was developed in the late 1970s in the groundbreaking works of F. Dyson, J. Fr¨ohlich, R. Israel, E. Lieb, B. Simon and T. Spencer who used it to establish phase transitions in a host of physically-interesting classical and quantum lattice spin models; most notably, the classical Heisenberg ferromagnet and the quantum XY model and Heisenberg antiferromagnet. Other powerful techniques — e.g., Pirogov-Sinai theory, lace expansion or multiscale analysis in field theory — are available at present that can serve a similar purpose in related contexts, but we will leave their review to experts in those areas

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.B Abrahamand O.J. Heilmann, Interacting dimers on the simple cubic lattice as a model for liquid crystals, J. Phys. A: Math. Gen. 13 (1980) 1051–1062.

    Google Scholar 

  2. M. Aizenman, Geometric analysis of π 4 fields and Ising models. I, II., Commun. Math. Phys. 86 (1982) 1–48.

    MathSciNet  MATH  Google Scholar 

  3. M. Aizenman, J.T. Chayes, L. Chayes and C.M. Newman, Discontinuity of the magnetization in one-dimensional 1/|x – y|2 Ising and Potts models, J. Statist. Phys. 50 (1988), no. 1–21–40.

    MathSciNet  MATH  Google Scholar 

  4. M. Aizenman and R. Fernández, On the critical behavior of the magnetization in high-dimensional Ising models, J. Statist. Phys. 44 (1986) 393–454.

    MathSciNet  MATH  Google Scholar 

  5. M. Aizenman and R. Fernández, Critical exponents for long-range interactions Lett. Math. Phys. 16 (1988)no. 1 39–49.

    MathSciNet  MATH  Google Scholar 

  6. N. Angelescu and V.A. Zagrebnov, A lattice model of liquid crystals with matrix order parameter, J. Phys. A 15 (1982)no. 11 L639–L643.

    MathSciNet  Google Scholar 

  7. M. Biskup, Reflection positivity of the random-cluster measure invalidated for non-integer q, J. Statist. Phys. 92 (1998) 369–375.

    MathSciNet  MATH  Google Scholar 

  8. M. Biskup, C. Borgs, J.T. Chayes and R. Kotecký, Gibbs states of graphical representations of the Potts model with external fields, J. Math. Phys. 41 (2000)no. 3, 1170–1210.

    MathSciNet  MATH  Google Scholar 

  9. M. Biskup and L. Chayes, Rigorous analysis of discontinuous phase transitions via mean-field bounds, Commun. Math. Phys. 238 (2003)no. 1–2, 53–93.

    MathSciNet  MATH  Google Scholar 

  10. M. Biskup, L. Chayes and N. Crawford, Mean-field driven first-order phase transitions in systems with long-range interactions, J. Statist. Phys. 122 (2006)no. 6, 1139–1193.

    MathSciNet  MATH  Google Scholar 

  11. M. Biskup, L. Chayes, and S.A. Kivelson, Order by disorder, without order, in a two-dimensional spin system with O(2)-symmetry, Ann. Henri Poincaré 5 (2004) no. 6,1181–1205.

    MathSciNet  MATH  Google Scholar 

  12. M. Biskup, L. Chayes, and R. Kotecký, Coexistence of partially disordered/ordered phases in an extended Potts model, J. Statist. Phys. 99 (2000)no. 5/6, 1169–1206.

    MathSciNet  MATH  Google Scholar 

  13. M. Biskup, L. Chayes, and Z. Nussinov, Orbital ordering in transition-metal compounds: I. The 120-degree model, Commun. Math. Phys. 255 (2005)no. 2, 253–292.

    MathSciNet  MATH  Google Scholar 

  14. M. Biskup, L. Chayes and Z. Nussinov, Orbital ordering in transitionmetal compounds: II. The orbital compass model, in preparation.

    Google Scholar 

  15. M. Biskup, L. Chayes and S. Starr, Quantum spin systems at positive temperature, Commun. Math. Phys. 269 (2007)no. 3, 611–657

    MathSciNet  MATH  Google Scholar 

  16. M. Biskup and R. Kotecký, Forbidden gap argument for phase transitions proved by means of chessboard estimates, Commun. Math. Phys. 264 (2006)no. 3, 631–656.

    MathSciNet  MATH  Google Scholar 

  17. M. Biskup and R. Kotecký, Phase coexistence of gradient Gibbs states, Probab. Theory Rel. Fields. 139 (2007)no. 1–2, 1–39.

    MathSciNet  MATH  Google Scholar 

  18. M. Biskup and H. Spohn, Scaling limit for a class of gradient fields with non-convex potentials, Ann. Probab. (to appear)

    Google Scholar 

  19. T. Bodineau, Translation invariant Gibbs states for the Ising model, Probab. Theory Related Fields. 135 (2006)no. 2, 153–168.

    MathSciNet  MATH  Google Scholar 

  20. C. Borgs and E. Seiler, Quark deconfinement at high temperature: a rigorous proof, Nucl. Phys. B 215 (1983)no. 1, 125–135.

    MathSciNet  Google Scholar 

  21. J. Bricmont and J.-R. Fontaine, Infrared bounds and the Peierls argument in two dimensions, Commun. Math. Phys. 87 (1982/83)no. 3, 417–427.

    MathSciNet  MATH  Google Scholar 

  22. J. Bricmont, H. Kesten, J.L. Lebowitz and R.H. Schonmann, A note on the Ising model in high dimensions, Commun. Math. Phys. 122 (1989) 597–607.

    MathSciNet  MATH  Google Scholar 

  23. R.M. Burton and M. Keane, Density and uniqueness in percolation, Commun. Math. Phys. 121 (1989)no. 3, 501–505.

    MathSciNet  MATH  Google Scholar 

  24. L. Chayes, Mean field analysis of low dimensional systems, Commun. Math. Phys. (to appear)

    Google Scholar 

  25. L. Chayes, R. Kotecký, and S. B. Shlosman. Staggered phases in diluted systems with continuous spins, Commun. Math. Phys. 189 (1997) 631–640.

    MATH  Google Scholar 

  26. L. Chayes and J. Machta, Graphical representations and cluster algorithms. Part I: Discrete spin systems, Physica. A 239 (1997) 542–601.

    Google Scholar 

  27. J.G. Conlon and J.P. Solovej, On asymptotic limits for the quantum Heisenberg model, J. Phys. (1990)no. 14, 3199–3213.

    MathSciNet  MATH  Google Scholar 

  28. P. Curie, Propriétés magnétiques des corps a diverses températures, Ann. de Chimie et Physique 5 (1885) 289; reprinted in Œuvres de Pierre Curie (Gauthier-Villars, Paris, 1908) pp. 232–334.

    Google Scholar 

  29. A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications (Springer Verlag, Inc., New York, 1998).

    MATH  Google Scholar 

  30. J.-D. Deuschel and D.W. Stroock, Large deviations, Pure and Applied Mathematics, 137. Academic Press, Inc., Boston, MA, 1989.

    Google Scholar 

  31. J. Dimock, and T. R. Hurd, Sine-Gordon revisited, Ann. Henri Poincaré. 1 (2000)no. 3, 499–541.

    MathSciNet  MATH  Google Scholar 

  32. R. Dobrushin, The description of a random field by means of conditional probabilities and conditions of its regularity, Theor. Prob. Appl. 13 (1968)no. 4, 197–224.

    MathSciNet  MATH  Google Scholar 

  33. R.L. Dobrushin and S.B. Shlosman, Phases corresponding to minima of the local energy, Selecta Math. Soviet. 1 (1981)no. 1, 317–338.

    MathSciNet  Google Scholar 

  34. R.L. Dobrushin and S. Shlosman, Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics, Commun. Math. Phys. 42 (1975) 31–40.

    MathSciNet  Google Scholar 

  35. R.L. Dobrushin and M. Zahradník, Phase diagrams for continuous-spin models: an extension of the Pirogov-Sinaĭ theory, In: R.L. Dobrushin (ed.), Mathematical problems of statistical mechanics and dynamics, pp. 1–123, Math. Appl. (Soviet Ser.), vol. 6, Reidel, Dordrecht, 1986.

    Google Scholar 

  36. R. Durrett, Probability: Theory and Examples, Second edition. Duxbury Press, Belmont, CA, 1996.

    Google Scholar 

  37. F.J. Dyson, General theory of spin-wave interactions, Phys. Rev. 102 (1956)no. 5, 1217–1230.

    MathSciNet  MATH  Google Scholar 

  38. F.J. Dyson, E.H. Lieb and B. Simon, Phase transitions in quantum spin systems with isotropic and nonisotropic interactions, J. Statist. Phys. 18 (1978) 335–383.

    MathSciNet  Google Scholar 

  39. R.G. Edwards and A.D. Sokal, Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm, Phys. Rev. D 38 (1988) 2009–2012.

    MathSciNet  Google Scholar 

  40. R.S. Ellis, Entropy, Large Deviations, and Statistical Mechanics, Grundlehren der Mathematischen Wissenschaften, vol. 271 (Springer-Verlag, New York, 1985).

    MATH  Google Scholar 

  41. A.C.D. van Enter and S.B. Shlosman, First-order transitions for n-vector models in two and more dimensions: Rigorous proof, Phys. Rev. Lett. 89 (2002) 285702.

    Google Scholar 

  42. A.C.D. van Enter and S.B. Shlosman, Provable first-order transitions for nonlinear vector and gauge models with continuous symmetries, Commun. Math. Phys. 255 (2005) 21–32.

    MathSciNet  MATH  Google Scholar 

  43. C.M. Fortuin and P.W. Kasteleyn, On the random cluster model. I. Introduction and relation to other models, Physica (Amsterdam). 57 (1972) 536–564.

    MathSciNet  Google Scholar 

  44. M. Freedman, L. Lovász and A. Schrijver, Reflection positivity, rank connectivity, and homomorphism of graphs, J. Amer. Math. Soc. 20 (2007)no. 1, 37–51.

    MathSciNet  MATH  Google Scholar 

  45. J. Fröhlich, On the triviality of λφ4 d theories and the approach to the critical point in d≥4 dimensions, Nucl. Phys. B 200 (1982)no. 2, 281–296.

    MathSciNet  Google Scholar 

  46. J. Fröhlich, R. Israel, E.H. Lieb and B. Simon, Phase transitions and reflection positivity. I. General theory and long-range lattice models, Commun. Math. Phys. 62 (1978)no. 1, 1–34.

    MathSciNet  Google Scholar 

  47. J. Fröhlich, R. Israel, E.H. Lieb and B. Simon, Phase transitions and reflection positivity. II. Lattice systems with short-range and Coulomb interactions, J. Statist. Phys. 22 (1980)np. 3, 297–347.

    MathSciNet  Google Scholar 

  48. J. Fröhlich and E.H. Lieb, Phase transitions in anisotropic lattice spin systems, Commun. Math. Phys. 60 (1978)no. 3, 233–267.

    MathSciNet  Google Scholar 

  49. J. Fröhlich and C.-E. Pfister, On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems, Commun. Math. Phys. 81 (1981)no. 2, 277–298.

    MathSciNet  Google Scholar 

  50. J. Fröhlich, B. Simon and T. Spencer, Infrared bounds, phase transitions and continuous symmetry breaking, Commun. Math. Phys. 50 (1976) 79–95.

    MathSciNet  Google Scholar 

  51. J. Fröhlich and T. Spencer, The Kosterlitz-Thouless transition in two-dimensional abelian spin systems and the Coulomb gas, Commun. Math. Phys. 81 (1981)no. 4, 527–602.

    MathSciNet  Google Scholar 

  52. T. Funaki, Stochastic Interface Models, Lecture Notes for the International Probability School at Saint-Flour, Lecture Notes in Math., 1869, Springer, Berlin, 2005.

    Google Scholar 

  53. T. Funaki and H. Spohn, Motion by mean curvature from the Ginzburg-Landauφ interface model, Commun. Math. Phys. 185 (1997) 1–36.

    MathSciNet  MATH  Google Scholar 

  54. D. Galvin and J. Kahn, On phase transition in the hard-core model on Z d, Combin. Probab. Comput. 13 (2004)no. 2, 137–164.

    MathSciNet  MATH  Google Scholar 

  55. D. Galvin and D. Randall, Torpid mixing of local markov chains on 3-Colorings of the discrete torus, Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), to appear.

    Google Scholar 

  56. P.G. de Gennes and J. Prost, The Physics of Liquid Crystals, Oxford University Press, New York, 1993.

    Google Scholar 

  57. H.-O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter Studies in Mathematics, vol. 9(Walter de Gruyter & Co., Berlin, 1988).

    Google Scholar 

  58. T. Gobron and I. Merola, First-order phase transition in Potts models with finite-range interactions, J. Statist. Phys. 126 (2007)no. 3, 507–583.

    MathSciNet  MATH  Google Scholar 

  59. R.B. Griffiths, Peierls proof of spontaneous magnetization in a two-dimensional Ising ferromagnet, Phys. Rev. (2) 136 (1964) A437–A439.

    MathSciNet  MATH  Google Scholar 

  60. R.B. Griffiths, Correlations in Ising ferromagnets, J. Math. Phys. 8 (1967)no. 3, 478–483.

    Google Scholar 

  61. G. Grimmett, The Random-Cluster Model, Grundlehren der Mathematischen Wissenschaften, vol. 333, Springer-Verlag, Berlin, 2006

    Google Scholar 

  62. O.J. Heilmann and E.H. Lieb, Lattice models for liquid crystals, J. Statist. Phys. 20 (1979)no. 6, 679–693.

    MathSciNet  Google Scholar 

  63. C.L. Henley, Ordering due to disorder in a frustrated vector antiferromagnet, Phys. Rev. Lett. 62 (1989) 2056–2059.

    Google Scholar 

  64. F. den Hollander, Large deviations, Fields Institute Monographs, 14. American Mathematical Society, Providence, RI, 2000.

    Google Scholar 

  65. D. Ioffe, S. Shlosman and Y. Velenik, 2D models of statistical physics with continuous symmetry: The case of singular interactions, Commun. Math. Phys. 226 (2002)no. 2, 433–454.

    MathSciNet  MATH  Google Scholar 

  66. R.B. Israel, Convexity in the theory of lattice gases, With an introduction by Arthur S. Wightman. Princeton University Press, Princeton, N.J., 1979.

    MATH  Google Scholar 

  67. T. Kennedy, Long range order in the anisotropic quantum ferromagnetic Heisenberg model, Commun. Math. Phys. 100 (1985) 447–462.

    MathSciNet  Google Scholar 

  68. T. Kennedy, E.H. Lieb and B.S. Shastry, Existence of Néel order in some spinHeisenberg antiferromagnets, J. Statist. Phys. 53 (1988)no. 3, 1019–1030,

    MathSciNet  Google Scholar 

  69. H. Kesten and R. Schonmann, Behavior in large dimensions of the Potts and Heisenberg models, Rev. Math. Phys. 1 (1990)no. 5–6 147–182.

    MathSciNet  MATH  Google Scholar 

  70. M. Kosterlitz and D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C: Solid State Phys. 6 (1973) 1181–1203.

    Google Scholar 

  71. R. Kotecký and S.B. Shlosman, Existence of first-order transitions for Potts models, In: S. Albeverio, Ph. Combe, M. Sirigue-Collins (eds.), Proc. of the International Workshop—Stochastic Processes in Quantum Theory and Statistical Physics, Lecture Notes in Physics 173, 248–253, Springer-Verlag, Berlin-Heidelberg-New York, 1982.

    Google Scholar 

  72. R. Kotecký and S.B. Shlosman, First-order phase transitions in large entropy lattice models, Commun. Math. Phys. 83 (1982)no. 4, 493–515.

    MathSciNet  Google Scholar 

  73. U. Krengel, Ergodic theorems, de Gruyter Studies in Mathematics, 6. Walter de Gruyter & Co., Berlin, 1985.

    MATH  Google Scholar 

  74. C. Külske, The continuous spin random field model: Ferromagnetic ordering in d ≥ 3, Rev. Math. Phys. 11 (1999)no. 10, 1269–1314.

    MathSciNet  MATH  Google Scholar 

  75. C. Külske, Stability for a continuous SOS-interface model in a randomly perturbed periodic potential, WIAS Preprint no. 466 (1998); http://www.math.rug.nl/∼kuelske/publications.html

  76. G.L. Lawler, Intersections of random walks, Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1991.

    MATH  Google Scholar 

  77. E.H. Lieb, Two theorems on the Hubbard model, Phys. Rev. Lett. 62 (1989), no. 10, 1201–1204. Errata: Phys. Rev. Lett. 62 (1989), no. 16, 1927.

    MathSciNet  Google Scholar 

  78. E.H. Lieb, Flux phase of the half-filled band, Phys. Rev. Lett. 73 (1994) 2158-2161.

    Google Scholar 

  79. N. Macris, Periodic ground states in simple models of itinerant fermions interacting with classical fields, The nature of crystalline states (Kudowa-Zdrój, 1995). Phys. 232 (1996)no. 3–4, 648–656.

    MathSciNet  Google Scholar 

  80. N. Macris and J. Lebowitz, Ground states and low-temperature phases of itinerant electrons interacting with classical fields: a review of rigorous results, Quantum problems in condensed matter physics, J. Math. Phys. 38 (1997)no. 4, 2084–210.

    MathSciNet  MATH  Google Scholar 

  81. N. Macris and B. Nachtergaele, On the flux phase conjecture at half-filling: an improved proof, J. Statist. Phys. 85 (1996) 745–761.

    MathSciNet  MATH  Google Scholar 

  82. N.D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17 (1966)no. 22, 1133–1136.

    Google Scholar 

  83. Z. Nussinov, M. Biskup, L. Chayes and J. van den Brink, Orbital order in classical models of transition-metal compounds, Europhys. Lett. 67 (2004)no. 6, 990–996.

    Google Scholar 

  84. K. Osterwalder and R. Schrader, Axioms for Euclidean Green's functions, Commun. Math. Phys. 31 (1973), 83–112.

    MathSciNet  MATH  Google Scholar 

  85. A. Patrasciou and E. Seiler, Percolation theory and the existence of a soft phase in 2D spin models, Nucl. Phys. B (Proc. Suppl.). 30 (1993) 184–191.

    Google Scholar 

  86. K. Petersen, Ergodic theory, Cambridge Studies in Advanced Mathematics, 2. Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  87. C.-E. Pfister, On the symmetry of the Gibbs states in two-dimensional lattice systems, Commun. Math. Phys. 79 (1981)no. 2, 181–188.

    MathSciNet  Google Scholar 

  88. D. Ruelle, Thermodynamic formalism. The mathematical structures of equilibrium statistical mechanics, Second edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 200

    Google Scholar 

  89. D. Ruelle, Statistical mechanics. Rigorous results, Reprint of the 1989 edition, World Scientific Publishing Co., Inc., River Edge, NJ; Imperial College Press, London, 1999.

    Google Scholar 

  90. A. Sakai, Lace expansion for the Ising model, Commun. Math. Phys. 272 (2007)no. 2, 283–344.

    MathSciNet  MATH  Google Scholar 

  91. M. Salmhofer and E. Seiler, Proof of chiral symmetry breaking in strongly coupled lattice gauge theory, Commun. Math. Phys. 139 (1991), no. 2, 395–432. Errata: ibid 146 (1992), no. 3, 637–638.

    MathSciNet  MATH  Google Scholar 

  92. S. Sheffield, Random Surfaces, Asterisque 2005, No. 304, 177pp.

    Google Scholar 

  93. E.F. Shender, Antiferromagnetic garnets with fluctuationally interacting sublattices, Sov. Phys. JETP 56 (1982) 178–184.

    Google Scholar 

  94. S. Shlosman, Phase transitions for two-dimensional models with isotropic short range interactions and continuous symmetry, Commun. Math. Phys. 71 (1980) 207–212.

    Google Scholar 

  95. S.B. Shlosman, The method of reflective positivity in the mathematical theory of phase transitions of the first kind (Russian), Uspekhi Mat. Nauk 41 (1986), no. 3(249), 69–111, 240.

    MathSciNet  Google Scholar 

  96. S. Shlosman and Y. Vignaud, Dobrushin interfaces via reflection positivity, Commun. Math. Phys. 276 (2007)no. 3, 827–86.

    MathSciNet  MATH  Google Scholar 

  97. B. Simon, The statistical mechanics of lattice gases, Vol. I., Princeton Series in Physics (Princeton University Press, Princeton, NJ, 1993).

    Google Scholar 

  98. A.D. Sokal, An alternate constructive approach to the φ3 4 quantum field theory, and a possible destructive approach to φ4 4, Ann. Inst. H. Poincaré Sect. 37 (1982)no. 4, 317–398.

    MathSciNet  Google Scholar 

  99. E.R. Speer, Failure of reflection positivity in the quantum Heisenberg ferromagnet, Lett. Math. Phys. 10 (1985)no. 1, 41–47.

    MathSciNet  Google Scholar 

  100. F. Spitzer, Principles of random walks, Second edition. Graduate Texts in Mathematics, Vol. 34. Springer-Verlag, New York-Heidelberg, 1976.

    Google Scholar 

  101. H. Tasaki, Ferromagnetism in the Hubbard model: a constructive approach, Commun. Math. Phys. 242 (2003)no. 3, 445–472.

    MathSciNet  MATH  Google Scholar 

  102. G.-S. Tian, Lieb's spin-reflection-positivity method and its applications to strongly correlated electron systems, J. Statist. Phys. 116 (2004)no. 1–4, 629–680.

    MathSciNet  MATH  Google Scholar 

  103. B. Tóth's website: www.math.bme.hu/∼balint/oktatas/statisztikus_fizika/jegyzet/

  104. Y. Velenik, Localization and delocalization of random interfaces, Probab. Surveys. 3 (2006) 112–169.

    MathSciNet  MATH  Google Scholar 

  105. P. Weiss, L'hypothèse du champ moléculaire et la propriété ferromagnétique, J. de Physique. 6 (1907) 661–689.

    MATH  Google Scholar 

  106. F.Y. Wu, The Potts model, Rev. Modern Phys. 54 (1982) 235–268.

    MathSciNet  Google Scholar 

  107. M. Zahradník, Contour methods and Pirogov-Sinai theory for continuous spin lattice models, In: R.A. Minlos, S. Shlosman and Yu.M. Suhov (eds.), On Dobrushin's way. From probability theory to statistical physics, pp. 197–220, Amer. Math. Soc. Transl. Ser. 2, vol. 198, Amer. Math. Soc., Providence, RI, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Biskup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Biskup, M. (2009). Reflection Positivity and Phase Transitions in Lattice Spin Models. In: Kotecký, R. (eds) Methods of Contemporary Mathematical Statistical Physics. Lecture Notes in Mathematics(), vol 1970. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92796-9_1

Download citation

Publish with us

Policies and ethics