Skip to main content

On Autonomy and Emergence in Self-Organizing Systems

  • Conference paper
Self-Organizing Systems (IWSOS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5343))

Included in the following conference series:

Abstract

For analyzing properties of complex systems, a mathematical model for these systems is useful. In this paper we describe how discrete complex systems can be modeled mathematically and we give a framework for the analysis of the system with respect to the properties autonomy and emergence, which are two of the most important properties of self-organizing systems. The modeling is done by using a multigraph to describe the connections between objects and stochastic automatons for the behavior of the objects.

The presented work has been supported by the EU projects Euro-NF (NoE, FP7, ICT-2007-1-216366) and AutoI (STREP, FP7, ICT-2007-1-216404).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Meer, H., Koppen, C.: Characterization of self-organization. In: Steinmetz, R., Wehrle, K. (eds.) Peer-to-Peer Systems and Applications. LNCS, vol. 3485, pp. 227–246. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Heylighen, F.P.: The science of self-organization and adaptivity. In: Kiel, L.D. (ed.) Knowledge Management, Organizational Intelligence and Learning, and Complexity, The Encyclopedia of Life Support Systems. EOLSS Publishers (2003)

    Google Scholar 

  3. Nicolis, G., Prigogine, I.: Self-Organization in Non-Equilibrium Systems: From Dissipative Structures to Order Through Fluctuations. Wiley, Chichester (1977)

    MATH  Google Scholar 

  4. Haken, H.: Synergetics and the Problem of Selforganization. In: Self-organizing Systems: An Interdisciplinary Approach, pp. 9–13. Campus Verlag (1981)

    Google Scholar 

  5. Shalizi, C.R.: Causal Architecture, Complexity and Self-Organization in Time Series and Cellular Automata. PhD thesis, University of Wisconsin-Madison (2001)

    Google Scholar 

  6. von Foerster, H.: On Self-Organizing Systems and their Environments. In: Self-Organizing Systems, pp. 31–50. Pergamon, Oxford (1960)

    Google Scholar 

  7. Ashby, W.R.: Principles of Self-organization. In: Principles of Self-organization, pp. 255–278. Pergamon, Oxford (1962)

    Google Scholar 

  8. Heylighen, F., Joslyn, C.: Cybernetics and second order cybernetics. In: Encyclopaedia of Physical Science & Technology, vol. 4, pp. 155–170 (2001)

    Google Scholar 

  9. Gershenson, C.: Design and Control of Self-organizing Systems. PhD thesis, Vrije Universiteit Brussel, Brussels, Belgium (May 2007)

    Google Scholar 

  10. Boccara, N.: Modeling Complex Systems. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  11. Holzer, R., de Meer, H.: On modeling of self-organizing systems. In: Autonomics 2008 (2008)

    Google Scholar 

  12. Di Marzo Serugendo, G., Foukia, N., Hassas, S., Karageorgos, A., Mostéfaoui, S.K., Rana, O.F., Ulieru, M., Valckenaers, P., Van Aart, C.: Self-organisation: Paradigms and applications. In: ESOA 2003. LNCS, vol. 2977, pp. 1–19. Springer, Heidelberg (2004)

    Google Scholar 

  13. Gerhenson, C., Heylighen, F.: When can we call a system self-organizing? In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 606–614. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Chichester (2006)

    MATH  Google Scholar 

  15. Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dessalles, J.L., Phan, D.: Emergence in multi-agent systems:cognitive hierarchy, detection, and complexity reduction. In: Computing in Economics and Finance 2005, vol. 257. Society for Computational Economics (November 2005)

    Google Scholar 

  17. Tyrrell, A., Auer, G., Bettstetter, C.: Biologically inspired synchronization for wireless networks. In: Dressler, F., Carreras, I. (eds.) Advances in Biologically Inspired Information Systems: Models, Methods, and Tools. Studies in Computational Intelligence, vol. 69, pp. 47–62. Springer, Heidelberg (1979)

    Chapter  Google Scholar 

  18. Mirollo, R., Strogatz, S.: Synchronization of pulse-coupled biological oscillators. SIAM Journal of Applied Mathematics 50, 1645–1662 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holzer, R., de Meer, H., Bettstetter, C. (2008). On Autonomy and Emergence in Self-Organizing Systems. In: Hummel, K.A., Sterbenz, J.P.G. (eds) Self-Organizing Systems. IWSOS 2008. Lecture Notes in Computer Science, vol 5343. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92157-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92157-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92156-1

  • Online ISBN: 978-3-540-92157-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics