Skip to main content

Compiling Fuzzy Answer Set Programs to Fuzzy Propositional Theories

  • Conference paper
Logic Programming (ICLP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5366))

Included in the following conference series:

Abstract

We show how a fuzzy answer set program can be compiled to an equivalent fuzzy propositional theory whose models correspond to the answer sets of the program. This creates a basis for constructing fuzzy answer set solvers, such as solvers based on fuzzy SAT-solvers or on linear programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics for the semantic web. In: Proceedings of the Second International Conference on Rules and Rule Markup Languages for the Semantic Web (RuleML 2006), pp. 89–96. IEEE Computer Society, Los Alamitos (2006)

    Chapter  Google Scholar 

  2. Lukasiewicz, T., Straccia, U.: Tightly integrated fuzzy description logic programs under the answer set semantics for the semantic web. In: Marchiori, M., Pan, J.Z., de Sainte Marie, C. (eds.) RR 2007. LNCS, vol. 4524, pp. 289–298. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Van Nieuwenborgh, D., De Cock, M., Vermeir, D.: An introduction to fuzzy answer set programming. Annals of Mathematics and Artificial Intelligence 50(3-4), 363–388 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Damásio, C., Medina, J., Ojeda-Aciego, M.: Sorted multi-adjoint logic programs: termination results and applications. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 260–273. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and its applications. Journal of Logic Programming 12(3-4), 335–367 (1992)

    Article  MathSciNet  Google Scholar 

  6. Straccia, U.: Annotated answer set programming. In: Proceedings of the 11th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2006 (2006)

    Google Scholar 

  7. Hähnle, R.: Many-valued logic and mixed integer programming. Annals of Mathematics and Artificial Intelligence 12(3-4), 231–263 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lepock, C., Pelletier, F.J.: Fregean algebraic tableaux: Automating inferences in fuzzy propositional logic. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS, vol. 3835, pp. 43–48. Springer, Heidelberg (2005)

    Google Scholar 

  9. Straccia, U.: Reasoning and experimenting within Zadeh’s fuzzy propositional logic. Technical report, Paris, France (2000)

    Google Scholar 

  10. Clark, K.L.: Negation as failure. In: Logic and Databases, pp. 293–322. Plenum Press, New York (1978)

    Google Scholar 

  11. Bell, C., Nerode, A., Ng, R.T., Subrahmanian, V.S.: Mixed integer programming methods for computing nonmonotonic deductive databases. Journal of the ACM 41(6), 1178–1215 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by sat solvers. Artificial Intelligence 157(1-2), 115–137 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1999)

    Book  MATH  Google Scholar 

  14. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  15. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the Fifth International Conference and Symposium on Logic Programming (ICLP/SLP 1988), ALP, IEEE, pp. 1081–1086. The MIT Press, Cambridge (1988)

    Google Scholar 

  16. van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of the Association for Computing Machinery 38(3), 620–650 (1991)

    MathSciNet  MATH  Google Scholar 

  17. Tarski, A.: A lattice theoretical fixpoint theorem and its application. Pacific Journal of Mathematics 5, 285–309 (1955)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Janssen, J., Heymans, S., Vermeir, D., De Cock, M. (2008). Compiling Fuzzy Answer Set Programs to Fuzzy Propositional Theories. In: Garcia de la Banda, M., Pontelli, E. (eds) Logic Programming. ICLP 2008. Lecture Notes in Computer Science, vol 5366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89982-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89982-2_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89981-5

  • Online ISBN: 978-3-540-89982-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics