Skip to main content

Enhancing ESP Efficiency for High Resistivity Fly Ash by Reducing the Flue Gas Temperature

  • Conference paper
Electrostatic Precipitation

Abstract

the resistivity of fly ash after coal-fired boilers varies with the flue gas temperature. the normal esp operating temperature of around 150°C is typically near the maximum resistivity of the ash. for low sulphur coals the resistivity will sharply decrease if the flue gas temperature at the esp inlet is reduced to about 100°C or less. this will mean that a significantly smaller esp can be built for a given efficiency. already in the early 1970’s esps were built at the liddell power station in australia purposely designed to operate at low temperature to reduce the fly ash resistivity. the full-scale design at liddell was based on pilot testing at other locations in order to verify the low temperature approach. despite successful implementation at liddell the experiences did not result in much follow-up of low temperature esp operation. the concept was revived in japan in the 1990’s, resulting in several installations working at temperatures below 100°C these units have a considerably reduced esp size, and the energy recovered upstream the esp is used to re-heat the flue gas after the desulphurisation system. the low temperature esp operation is now well proven and a viable alternative when burning low sulphur coals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Walker A.B.; Hot-side precipitators. APCA journal, Vol. 25, 143, 1975.

    CAS  Google Scholar 

  2. Bickelhaupt R.E.; An interpretation of the deteriorative performance of hot-side precipitators. APCA journal, Vol. 30, 882, 1980.

    Google Scholar 

  3. Porle K., Karlsson R., Kirkegaard B.; Long-term experience with pulsed energization of ESP’s at a Danish power station. The 6th Symposium on the Transfer and Utilization of Particulate Control Technology, New Orleans, USA, 1986.

    Google Scholar 

  4. Tanaka T., Fujishima H.; Development of advanced dust collecting system for coal-fired power plant. ICESP V, Washington D. C., USA, 1993.

    Google Scholar 

  5. Fujishima H., Tsuchiya Y., Onishi S. Colder side electrostatic precipitator of advanced flue gas treatment system for coal fired boiler. ICESP VII, Kyongju, Korea 1998.

    Google Scholar 

  6. Matts S., Öhnfeldt P-O. Efficient gas cleaning with the SF electrostatic precipitator. Fläkt Review, Vol. 6/7, 105, 1963/1964.

    Google Scholar 

  7. Lillieblad L., Johansson T., Porle K.; Electrostatic precipitator performance with Chinese coals. ICESP X, Cairns, Australia 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Zhejiang University Press, Hangzhou and Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Bäck, A. (2009). Enhancing ESP Efficiency for High Resistivity Fly Ash by Reducing the Flue Gas Temperature. In: Yan, K. (eds) Electrostatic Precipitation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89251-9_82

Download citation

Publish with us

Policies and ethics