Skip to main content

Genetic Algorithm Based Feature Selection Applied on Predicting Microsleep from Speech

  • Conference paper

Part of the book series: IFMBE Proceedings ((IFMBE,volume 22))

Abstract

Within this study we apply a speech emotion recognition engine on the detection of microsleep endangered sleepiness states. Current approaches in speech emotion recognition use low-level descriptors and functionals to compute brute-force feature sets. This paper describes an usually large feature set (45k) utilizing a broad pool of diverse elementary statistics and spectral descriptors. Several (un-)supervised subset selection methods including genetic algorithm based methods were employed on the feature space in an attempt to prune redundant dimensions. The resulting dimensionality reduced feature space was applied to speech samples gained from a car simulator based sleep deprivation study (N=12; 01.00–08.00 a.m.). Among the tested dimensionality reduction methods a simple correlation filter approach (130 features remaining) reached the best recognition rate (85.1%, SVM) in predicting microsleep endangered sleepiness stages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sommer D, Chen M, Golz M, Trutschel U, Mandic D (2005) Fusion of State Space and Frequency Domain Features for Improved Microsleep Detection. In W Dutch et al. (Eds.) Int Conf Artifical Neural Networks (ICANN 200), pp 753–759. Springer: Berlin

    Google Scholar 

  2. Golz M, Sommer D, Chen M, Trutschel U, Mandic D (2007) Feature Fusion for the Detection of Microsleep Events. J VLSI Signal Proc Syst, 49:329–342

    Article  Google Scholar 

  3. Harrison Y, Horne JA (1997) Sleep deprivation affects speech. Sleep 20:871–877

    Google Scholar 

  4. Whitmore J, Fisher S (1996) Speech during sustained operations. Speech Communication 20:55–70

    Article  Google Scholar 

  5. Krajewski J, Kröger B (2007) Using prosodic and spectral characteristics for sleepiness detection. Interspeech Proc., Antwerp, Belgium, 2003, pp 1841–1844

    Google Scholar 

  6. Krajewski J, Wieland R, Batliner A (in press) An acoustic framework for detecting fatigue in human-computer interaction. ICCHP Proc., Linz, Austria, 2008

    Google Scholar 

  7. Nwe TL, Li H, Dong M (2006) Analysis and Detection of Speech under Sleep Deprivation. Interspeech Proc., Pittsburgh, USA, 2006, pp 17–21

    Google Scholar 

  8. Vlasenk B, Schuller B, Wendemuth A, Rigoll G (2007) Combining Frame and Turn-Level Information for Robust Recognition of Emotions within Speech. Interspeech Proc., Antwerp, Belgium, pp 2249–2252

    Google Scholar 

  9. Batliner A, Steidl S, Schuller B, Seppi D, Laskowski K, Vogt T, Devillers L, Vidrascu L, Amir N, Kessous L, Aharonson V (2006) Combining Efforts for Improving Automatic Classification of Emotional User States. In Erjavec T & Gros JZ (Eds.): Language Technologies, IS-LTC 2006, Ljubljana, Slovenia, pp 240–245

    Google Scholar 

  10. Mierswa I, Morik K (2005) Automatic feature extraction for classifying audio data”. Machine Learning Journal 58:127–148

    Article  MATH  Google Scholar 

  11. Schuller B, Reiter S, Rigoll G (2006) Evolutionary Feature Generation in Speech Emotion Recognition. ICME 2006, Toronto, Canada, 2006, pp 5–8

    Google Scholar 

  12. Åkerstedt T, Gillberg M (1990) Subjective and objective sleepiness in the active individual. International Journal of Neuroscience 52:29–37

    Article  Google Scholar 

  13. Boersma P (2001) PRAAT, a system for doing phonetics by computer, Glot International 5:341–345

    Google Scholar 

  14. Witten IH, Frank E (2005) Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, San Francisco

    MATH  Google Scholar 

  15. Webber C L, Zbilut J P (1994) Dynamical assessment of physiological systems and states using recurrence plot strategies. Journal of Applied Physiology 76: 965–973

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krajewski, J., Golz, M., Sommer, D., Wieland, R. (2009). Genetic Algorithm Based Feature Selection Applied on Predicting Microsleep from Speech. In: Vander Sloten, J., Verdonck, P., Nyssen, M., Haueisen, J. (eds) 4th European Conference of the International Federation for Medical and Biological Engineering. IFMBE Proceedings, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89208-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89208-3_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89207-6

  • Online ISBN: 978-3-540-89208-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics