Skip to main content

Vector Computers in a World of Commodity Clusters, Massively Parallel Systems and Many-Core Many-Threaded CPUs: Recent Experience Based on an Advanced Lattice Boltzmann Flow Solver

  • Conference paper

Summary

This report summarizes experience gained during the last year using the NEC SX-8 at HLRS and its wide range of competitors: commodity clusters with Infiniband interconnect, massively parallel systems (Cray XT4, IBM BlueGene L/P) and emerging many-core many-threaded CPUs (SUN Niagara2 processor). The observations are based on low-level benchmarks and the use of an advanced lattice Boltzmann flow solver developed in the framework of an international development consortium (ILBDC).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Axner, J. Bernsdorf, T. Zeiser, P. Lammers, J. Linxweiler, and A.G. Hoekstra. Performance evaluation of a parallel sparse lattice Boltzmann solver. J. Comput. Phys., 227(10):4895–4911, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  2. P. Bhatnagar, E.P. Gross, and M.K. Krook. A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems. Phys. Rev., 94(3):511–525, 1954.

    Article  MATH  Google Scholar 

  3. M. Bouzidi, M. Firdaouss, and P. Lallemand. Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids, 13(11):3452–3459, 2001.

    Article  Google Scholar 

  4. S. Chen and G.D. Doolen. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech., 30:329–364, 1998.

    Article  MathSciNet  Google Scholar 

  5. D. d‘Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, and L.-S. Luo. Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. Lond. A, 360(1792):437–452, 2002.

    Article  MATH  Google Scholar 

  6. B. Ferreol and D.H. Rothman. Lattice-Boltzmann simulations of flow through Fontainebleau sandstone. Transport in Porous Media, 20:3–20, 1995.

    Article  Google Scholar 

  7. I. Ginzburg. Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Advances in Water Resources, 28(11):1171–1195, 2005.

    Article  Google Scholar 

  8. I. Ginzburg and D. d’Humières. Multireflection boundary conditions for lattice Boltzmann models. Phys. Rev. E, 68(6):066614_30, 2003.

    Article  MathSciNet  Google Scholar 

  9. J. Götz. Numerical simulation of bloodflow in aneurysms using the lattice Boltzmann method. Master thesis, Lehrstuhl für Informatik 10 (Systemsimulation), Universität Erlangen-Nürnberg, 2006.

    Google Scholar 

  10. G. Hager, H. Stengel, T. Zeiser, and G. Wellein. RZBENCH: Performance evaluation of current HPC architectures using low-level and application benchmarks. In HLRB/KONWIHR Results and Review Workshop, LRZ-Munich, Garching, Dec. 3-4, 2007, http://arxiv.org/abs/0712.3389 , Berlin, Heidelberg, in press, 2008. Springer-Verlag.

  11. G. Hager and G. Wellein. Architecture and performance characteristics of modern high performance computers. In H. Fehske, R. Schneider, and A. Weiße, editors, Computational Many-Particle Physics, volume 739 of Lecture notes in Physics. pages 681–730, Berlin, Heidelberg, 2008. Springer-Verlag.

    Chapter  Google Scholar 

  12. G. Hager and G. Wellein. Optimization techniques for modern high performance computers. In H. Fehske, R. Schneider, and A. Weiße, editors, Computational Many-Particle Physics, volume 739 of Lecture notes in Physics, pages 731–767, Berlin, Heidelberg, 2008. Springer-Verlag.

    Chapter  Google Scholar 

  13. G. Hager, T. Zeiser, J. Treibig, and G. Wellein, Optimizing performance on modern HPC systems: Learning from simple kernel benchmarks. In E. Krause, Y. Shokin, M. Resch, and N. Shokina, editors, Computational Science and High Performance Computing II: The 2nd Russian-German Advanced Research Workshop, Stuttgart, Germany, March 14 to 16, 2005, volume 91 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), pages 273–287, Berlin, Heidelberg, 2006. Springer-Verlag.

    Chapter  Google Scholar 

  14. G. Hager, T. Zeiser, and G. Wellein. Data access optimizations for highly threaded multi-core CPUs with multiple memory controllers. In Workshop on Large-Scale Parallel Processing 2008 (IPDPS2008), Miami, FL, April 18, 2008, http://arxiv.org/abs/0712.2302 , 2008.

  15. X. He and L.-S. Luo. Lattice Boltzmann model for the incompressible Navier-Stokes equation. J. Stat. Phys., 88(3/4):927–944, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  16. X. He and L.-S. Luo. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E, 56(6):6811–6817, 1997.

    Article  Google Scholar 

  17. V. Heuveline, M.J. Krause, and J. Latt. Towards a hybrid parallelization of lattice Boltzmann methods. Proceedings of ICMMES2007, 2008.

    Google Scholar 

  18. G. Karypis and V. Kumar. METIS: Serial graph partitioning and fill-reducing matrix ordering, 1998.

    Google Scholar 

  19. J.D. McCalpin. STREAM: Sustainable memory bandwidth in high performance computers, 1991-2007.

    Google Scholar 

  20. S. Succi. The Lattice Boltzmann Equation – For Fluid Dynamics and Beyond. Clarendon Press, 2001.

    Google Scholar 

  21. Sun Microsystems. OpenSPARC T2 core microarchitecture specification. Technical report, 2007.

    Google Scholar 

  22. Sun Microsystems. private communication, 2008.

    Google Scholar 

  23. G. Wellein, T. Zeiser, S. Donath, and G. Hager. On the single processor performance of simple lattice Boltzmann kernels. Computers & Fluids, 35(8-9):910–919, 2006.

    Article  Google Scholar 

  24. D. Yu, R. Mei, L.-S. Luo, and W. Shyy. Viscous flow computations with the method of lattice Boltzmann equation. Progr. Aero. Sci., 39:329–367, 2003.

    Article  Google Scholar 

  25. T. Zeiser. Combination of detailed CFD simulations using the lattice Boltzmann method and experimental measurements using the NMR/MRI technique. In E. Krause, W. Jäger, and M. Resch, editors, High Performance Computing in Science and Engineering ’04, Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2004, pages 277–292, Berlin, Heidelberg, 2005. Springer-Verlag.

    Chapter  Google Scholar 

  26. T. Zeiser. Simulation von durchströmten Schüttungen auf Hochleistungsrechnern. PhD thesis, Technische Fakultät, Universität Erlangen-Nürnberg, 2008.

    Google Scholar 

  27. T. Zeiser, M. Bashoor-Zadeh, A. Darabi, and G. Baroud. Pore-scale analysis of Newtonian flow in the explixit geometry of vertebral trabecular bone using lattice Boltzmann simulation. J. Eng. Med., Proc. Inst. Mech. Eng. Part H, 222(2):185–194, 2008.

    Article  Google Scholar 

  28. T. Zeiser, J. Götz, and M. Stürmer. On performance and accuracy of lattice Boltzmann approaches for single phase flow in porous media. In Computational Science and High Performance Computing – Russian-German Adwanced Research Workshop, Novosibirk, Russia, July 2007, Berlin, Heidelberg, in press. Springer-Verlag.

    Google Scholar 

  29. T. Zeiser, G. Wellein, G. Hager, S. Donath, F. Deserno, P. Lammers, and M. Wierse. Optimized lattice Boltzmann kernels as testbeds for processor performance. Technical report, Regionales Rechenzentrum Erlangen, Universität Erlangen-Nürnberg, May 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang E. Nagel Dietmar B. Kröner Michael M. Resch

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zeiser, T., Hager, G., Wellein, G. (2009). Vector Computers in a World of Commodity Clusters, Massively Parallel Systems and Many-Core Many-Threaded CPUs: Recent Experience Based on an Advanced Lattice Boltzmann Flow Solver. In: Nagel, W.E., Kröner, D.B., Resch, M.M. (eds) High Performance Computing in Science and Engineering '08. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88303-6_24

Download citation

Publish with us

Policies and ethics