Skip to main content

An Algorithm for Inferring Mitogenome Rearrangements in a Phylogenetic Tree

  • Conference paper
Comparative Genomics (RECOMB-CG 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5267))

Included in the following conference series:

Abstract

Given the mitochondrial gene orders and the phylogenetic relationship of a set of unichromosomal taxa, we study the problem of finding a plausible and parsimonious assignment of genomic rearrangement events to the edges of the given phylogenetic tree. An algorithm called algorithm TreeREx (tree rearrangement explorer) is proposed for solving this problem heuristically. TreeREx is based on an extended version of algorithm CREx (common interval rearrangement explorer, [4]) that heuristically computes pairwise rearrangement scenarios for gene order data. As phylogenetic events in such scenarios reversals, transpositions, reverse transpositions, and tandem duplication random loss (TDRL) operations are considered. CREx can detect such events as patterns in the signed strong interval tree, a data structure representing gene groups that appear consecutively in a set of two gene orders. TreeREx then tries to assign events to the edges of the phylogenetic tree, such that the pairwise scenarios are reflected on the paths of the tree. It is shown that TreeREx can automatically infer the events and the ancestral gene orders for realistic biological examples of mitochondrial gene orders. In an analysis of gene order data for teleosts, algorithm TreeREx is able to identify a yet undocumented TDRL towards species Bregmaceros nectabanus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arndt, A., Smith, M.J.: Mitochondrial gene rearrangement in the sea cucumber genus cucumaria. Mol. Biol. Evol. 15(8), 9–16 (1998)

    Google Scholar 

  2. Bérard, S., Bergeron, A., Chauve, C., Paul, C.: Perfect sorting by reversals is not always difficult. IEEE/ACM Transaction on Computational Biology and Bioinformatics 4(1), 4–16 (2007)

    Article  Google Scholar 

  3. Bergeron, A., Chauve, C., de Montgolfier, F., Raffinot, M.: Computing common intervals of k permutations, with applications to modular decomposition of graphs. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 779–790. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Bernt, M., Merkle, D., Ramsch, K., Fritzsch, G., Perseke, M., Bernhard, D., Schlegel, M., Stadler, P.F., Middendorf, M.: Crex: inferring genomic rearrangements based on common intervals. Bioinformatics 23, 2957–2958 (2007)

    Article  Google Scholar 

  5. Blanchette, M., Kunisawa, T., Sankoff, D.: Gene order breakpoint evidence in animal mitochondrial phylogeny. J. Mol. Evol. 49, 193–203 (1999)

    Article  Google Scholar 

  6. Boore, J.L.: Mitochondrial gene arrangement database (2006), http://evogen.jgi.doe.gov/

  7. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms. Journal of Computer and System Sciences 13, 335–379 (1976)

    MATH  MathSciNet  Google Scholar 

  8. Caprara, A.: The reversal median problem. INFORMS Journal on Computing 15, 93–113 (2003)

    Article  MathSciNet  Google Scholar 

  9. Chaudhuri, K., Chen, K., Mihaescu, R., Rao, S.: On the tandem duplication-random loss model of genome rearrangement. In: SODA, pp. 564–570 (2006)

    Google Scholar 

  10. Heber, S., Stoye, J.: Algorithms for finding gene clusters. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 252–263. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Inoue, J.G., Miya, M., Tsukamoto, K., Nishida, M.: Evolution of the deep-sea gulper eel mitochondrial genomes: large-scale gene rearrangements originated within the eels. Mol. Biol. Evol. 20, 1917–1924 (2003)

    Article  Google Scholar 

  12. Lavrov, D.V., Boore, J.L., Brown, W.M.: Complete mtdna sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. Mol. Biol. Evol. 19, 163–169 (2002)

    Google Scholar 

  13. Littlewood, D.T.J., Smith, A.B., Cloug, h.K.A., Emson, R.H.: The interrelationships of the echinoderm classes: morphological and molecular evidence. Biol. J. Linn. Soc. 61, 409–438 (1997)

    Article  Google Scholar 

  14. Miya, M., Takeshima, H., Endo, H., Ishiguro, N.B., Inous, J.G., Mukai, T., Satoh, T.P., Yamagucki, M., Kawaguchi, A., Mabuchi, K., Shirai, S.M., Nishida, M.: Major patterns of higher teleost phylogenies: a new perspective based on 100 complete mitochondrial dna sequences. Mol. Phyl. Evol. 26, 121–138 (2003)

    Article  Google Scholar 

  15. Mooi, R., David, B.: Skeletal homologies of echinoderms. Paleont. Soc. Papers 3, 305–335 (1997)

    Google Scholar 

  16. Parida, L.: Using pq structures for genomic rearrangement phylogeny. Journal of Computational Biology 13(10), 1685–1700 (2006)

    Article  MathSciNet  Google Scholar 

  17. Perseke, M., Fritzsch, G., Ramsch, K., Bernt, M., Merkle, D., Middendorf, M., Bernhard, D., Stadler, P.F., Schlegel, M.: Evolution of mitochondrial gene orders in echinoderms. Mol. Phyl. Evol. (in press, 2008)

    Google Scholar 

  18. Sankoff, D.: Analytical approaches to genomic evolution. Biochimie 75, 409–413 (1993)

    Article  Google Scholar 

  19. Scouras, A., Beckenbach, K., Arndt, A., Smith, M.J.: Complete mitochondrial genome dna sequence for two ophiuroids and a holothuroid: the utility of protein gene sequence and gene maps in the analyses of deep deuterostome phylogeny. Mol. Phyl. Evol. 31(1), 50–65 (2004)

    Article  Google Scholar 

  20. Uno, T., Yagiura, M.: Fast algorithms to enumerate all common intervals of two permutations. Algorithmica 26(2), 290–309 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zhao, H., Bourque, G.: Recovering true rearrangement events on phylogenetic trees. In: Tesler, G., Durand, D. (eds.) RECMOB-CG 2007. LNCS (LNBI), vol. 4751, pp. 149–161. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bernt, M., Merkle, D., Middendorf, M. (2008). An Algorithm for Inferring Mitogenome Rearrangements in a Phylogenetic Tree. In: Nelson, C.E., Vialette, S. (eds) Comparative Genomics. RECOMB-CG 2008. Lecture Notes in Computer Science(), vol 5267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87989-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87989-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87988-6

  • Online ISBN: 978-3-540-87989-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics