Skip to main content

Ignoble Trails - Where Crossover Is Provably Harmful

  • Conference paper
Parallel Problem Solving from Nature – PPSN X (PPSN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5199))

Included in the following conference series:

Abstract

Beginning with the early days of the genetic algorithm and the schema theorem it has often been argued that the crossover operator is the more important genetic operator. The early Royal Road functions were put forth as an example where crossover would excel, yet mutation based EAs were subsequently shown to experimentally outperform GAs with crossover on these functions. Recently several new Royal Roads have been introduced and proved to require expected polynomial time for GAs with crossover, while needing exponential time to optimize for mutation-only EAs. This paper does the converse, showing proofs that GAs with crossover require exponential optimization time on new Ignoble Trail functions while mutation based EAs optimize them efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mitchell, M., Forrest, S., Holland, J.H.: The royal road for genetic algorithms: Fitness landscapes and GA performance. In: Varela, F.J., Bourgine, P. (eds.) Proceedings of the First European Conference on Artificial Life. Toward a Practice of Autonomous Systems, pp. 243–254. MIT Press, Cambridge (1992)

    Google Scholar 

  2. Forrest, S., Mitchell, M.: Relative building-block fitness and the building-block hypothesis. In: Whitley, L.D. (ed.) Foundations of genetic algorithms 2, pp. 109–126. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  3. Mitchell, M., Holland, J.H., Forrest, S.: When will a genetic algorithm outperform hill climbing. In: Cowan, J.D., Tesauro, G., Alspector, J. (eds.) NIPS, pp. 51–58. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  4. Jansen, T., Wegener, I.: Real royal road functions–where crossover provably is essential. Discrete Applied Mathematics 149(1-3), 111–125 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Poli, R., Wright, A.H., McPhee, N., Langdon, W.: Emergent behaviour, population-based search and low-pass filtering. In: Proceedings of the Congress on Evolutionary Computation (CEC) 2006, pp. 88–95. IEEE Press, Los Alamitos (2006)

    Google Scholar 

  6. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. In: Whitley, L.D. (ed.) FOGA, pp. 93–108. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  7. Watson, R.A.: Analysis of recombinative algorithms on a non-separable building-block problem. In: Foundations of Genetic Algorithms 6, pp. 69–89. Morgan Kaufmann, San Francisco (2001)

    Chapter  Google Scholar 

  8. Watson, R.A., Pollack, J.B.: Hierarchically consistent test problems for genetic algorithms. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proceedings of the Congress on Evolutionary Computation, Mayflower Hotel, Washington D.C., USA, vol. 2, pp. 6–9. IEEE Press, Los Alamitos (1999)

    Google Scholar 

  9. Dietzfelbinger, M., Naudts, B., Hoyweghen, C.V., Wegener, I.: The analysis of a recombinative hill-climber on h-iff. IEEE Trans. Evolutionary Computation 7(5), 417–423 (2003)

    Article  Google Scholar 

  10. Jansen, T., Wegener, I.: The analysis of evolutionary algorithms - a proof that crossover really can help. Algorithmica 34(1), 47–66 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Storch, T., Wegener, I.: Real royal road functions for constant population size. Theor. Comput. Sci. 320(1), 123–134 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fischer, S., Wegener, I.: The one-dimensional ising model: Mutation versus recombination. Theor. Comput. Sci. 344(2-3), 208–225 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sudholt, D.: Crossover is provably essential for the ising model on trees. In: GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, pp. 1161–1167. ACM, New York (2005)

    Google Scholar 

  14. Doerr, B., Happ, E., Klein, C.: Crossover is provably useful in evolutionary computation. In: GECCO 2008: Proceedings of the 2008 conference on Genetic and evolutionary computation (to appear, 2008)

    Google Scholar 

  15. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)

    Google Scholar 

  16. Rudolph, G.: Convergence Properties of Evolutionary Algorithms. Dr. Kovac, Hamburg (1997)

    Google Scholar 

  17. Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge University Press, New York (1995)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Richter, J.N., Wright, A., Paxton, J. (2008). Ignoble Trails - Where Crossover Is Provably Harmful. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds) Parallel Problem Solving from Nature – PPSN X. PPSN 2008. Lecture Notes in Computer Science, vol 5199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87700-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87700-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87699-1

  • Online ISBN: 978-3-540-87700-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics