Skip to main content

Complexity and Algorithms for Well-Structured k-SAT Instances

  • Conference paper
Book cover Theory and Applications of Satisfiability Testing – SAT 2008 (SAT 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4996))

Abstract

This paper consists of two conceptually related but independent parts. In the first part we initiate the study of k-SAT instances of bounded diameter. The diameter of an ordered CNF formula is defined as the maximum difference between the index of the first and the last occurrence of a variable. We investigate the relation between the diameter of a formula and the tree-width and the path-width of its corresponding incidence graph. We show that under highly parallel and efficient transformations, diameter and path-width are equal up to a constant factor. Our main result is that the computational complexity of SAT, Max-SAT, #SAT grows smoothly with the diameter (as a function of the number of variables). Our focus is in providing space efficient and highly parallel algorithms, while the running time of our algorithms matches previously known results. Our results refer to any diameter, whereas for the special case where the diameter is O(logn) we show NL-completeness of SAT and NC2 algorithms for Max-SAT and #SAT.

In the second part we deal directly with k-CNF formulas of bounded tree-width. We describe algorithms in an intuitive but not-so-standard model of computation. Then we apply constructive theorems from computational complexity to obtain deterministic time-efficient and simultaneously space-efficient algorithms for k-SAT as asked by Alekhnovich and Razborov [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekhnovich, A., Razborov, A.: Satisfiability, branch-width and Tseitin tautologies. In: FOCS, pp. 593–603 (2002)

    Google Scholar 

  2. Amir, E., Mcilraith, S.: Solving satisfiability using decomposition and the most constrained subproblem. In: LICS workshop on Theory and Applications of Satisfiability Testing. Electronic Notes in Discrete Mathematics (2001)

    Google Scholar 

  3. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP. J. ACM 45, 70–122 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and complexity results for #SAT and bayesian inference. In: FOCS, pp. 340–351 (2003)

    Google Scholar 

  5. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernet 11(1-2), 1–21 (1993)

    MATH  MathSciNet  Google Scholar 

  6. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms 18(2), 238–255 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chinn, P.Z., Chvátalová, J., Dewdney, A.K., Gibbs, N.E.: The bandwidth problem for graphs and matrices - A survey. J. Graph Theory 6(3), 223–254 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cook, S.A.: Characterizations of pushdown machines in terms of time-bounded computers. J. ACM 18(1), 4–18 (1971)

    Article  MATH  Google Scholar 

  9. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC, pp. 151–158 (1971)

    Google Scholar 

  10. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic. Discrete Appl. Math. 108(1-2), 23–52 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Du, D.-Z., Ko, K.-I.: Theory of Computational Complexity. Wiley-Interscience, New York (2000)

    MATH  Google Scholar 

  12. Feige, U.: Approximating the bandwidth via volume respecting embeddings. J. Comput. Syst. Sci 60(3), 510–539 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fischer, E., Makowsky, J.A., Ravve, E.R.: Counting truth assignments of formulas of bounded tree-width or clique-width. Discrete Appl. Math. 155(14), 1885–1893 (2007)

    Article  MathSciNet  Google Scholar 

  14. Flouris, M., Lau, L.C., Morioka, T., Papakonstantinou, P.A., Penn, G.: Bounded and ordered satisfiability: connecting recognition with Lambek-style calculi to classical satisfiability testing. In: Math. of language 8, pp. 45–56 (2003)

    Google Scholar 

  15. Garey, M.R., Graham, R.L., Johnson, D.S., Knuth, D.E.: Complexity results for bandwidth minimization. SIAM J. Appl. Math. 34(3), 477–495 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gottlob, G., Scarcello, F., Sideri, M.: Fixed-parameter complexity in AI and nonmonotonic reasoning. Artificial Intelligence 138(1–2), 55–86 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hlineny, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their applications. The Computer Journal 8, 216–235 (2007)

    Google Scholar 

  18. Khanna, S., Motwani, R.: Towards a syntactic characterization of PTAS. In: STOC, pp. 329–337. ACM, New York (1996)

    Google Scholar 

  19. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. of Comp. 9(3), 615–627 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  20. Nishimura, N., Ragde, P., Szeider, S.: Solving #SAT using vertex covers. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 396–409. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Combin. Theory Ser. B 96(4), 514–528 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Papadimitriou, C.H.: The NP-completeness of the bandwidth minimization problem. Computing 16(3), 263–270 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  23. Papakonstantinou, P.A., Penn, G., Vahlis, Y.: Polynomial-time and parallel algorithms for fragments of Lambek Grammars (unpublished manuscript)

    Google Scholar 

  24. Robertson, N., Seymour, P.D.: Graph minors I. Excluding a forest. J. of Comb. Theory (Ser. B) 35, 39–61 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  25. Robertson, N., Seymour, P.D.: Graph minors. II. algorithmic aspects of tree-width. J. of Algorithms 7, 309–322 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ruzzo, W.L.: On uniform circuit complexity. J. Comput. System Sci. 22(3), 365–383 (1981) Special issue dedicated to Michael Machtey

    Article  MATH  MathSciNet  Google Scholar 

  27. Samer, M., Szeider, S.: A fixed-parameter algorithm for #SAT with parameter incidence treewidth. CoRR, abs/cs/061017 (2006) informal publication

    Google Scholar 

  28. Samer, M., Szeider, S.: Algorithms for propositional model counting. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 484–498. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  29. Smithline, L.: Bandwidth of the complete k-ary tree. Discrete Math. 142(1-3), 203–212 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sudborough, I.H.: On the tape complexity of deterministic context-free languages. J. Assoc. Comput. Mach. 25(3), 405–414 (1978)

    MATH  MathSciNet  Google Scholar 

  31. Szeider, S.: On fixed-parameter tractable parameterizations of SAT. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 188–202. Springer, Heidelberg (2004)

    Google Scholar 

  32. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci. 8(2), 189–201 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  33. Valiant, L.G., Skyum, S., Berkowitz, S., Rackoff, C.: Fast parallel computation of polynomials using few processors. SIAM J. Comput. 12(4), 641–644 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  34. Vollmer, H.: Introduction to Circuit Complexity - A Uniform Approach. Springer, Heidelberg (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hans Kleine Büning Xishun Zhao

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Georgiou, K., Papakonstantinou, P.A. (2008). Complexity and Algorithms for Well-Structured k-SAT Instances. In: Kleine Büning, H., Zhao, X. (eds) Theory and Applications of Satisfiability Testing – SAT 2008. SAT 2008. Lecture Notes in Computer Science, vol 4996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79719-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79719-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79718-0

  • Online ISBN: 978-3-540-79719-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics