Skip to main content

Logical Closure Properties of Propositional Proof Systems

(Extended Abstract)

  • Conference paper
Book cover Theory and Applications of Models of Computation (TAMC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4978))

Abstract

In this paper we define and investigate basic logical closure properties of propositional proof systems such as closure of arbitrary proof systems under modus ponens or substitutions. As our main result we obtain a purely logical characterization of the degrees of schematic extensions of \({\mathit{EF}}\) in terms of a simple combination of these properties. This result underlines the empirical evidence that \({\mathit{EF}}\) and its extensions admit a robust definition which rests on only a few central concepts from propositional logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atserias, A., Bonet, M.L.: On the automatizability of resolution and related propositional proof systems. Information and Computation 189(2), 182–201 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beyersdorff, O.: Classes of representable disjoint NP-pairs. Theoretical Computer Science 377, 93–109 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beyersdorff, O.: The deduction theorem for strong propositional proof systems. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 241–252. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Bonet, M.L.: Number of symbols in Frege proofs with and without the deduction rule. In: Clote, P., Krajíček, J. (eds.) Arithmetic, Proof Theory and Computational Complexity, pp. 61–95. Oxford University Press, Oxford (1993)

    Google Scholar 

  5. Bonet, M.L., Buss, S.R.: The deduction rule and linear and near-linear proof simulations. The Journal of Symbolic Logic 58(2), 688–709 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonet, M.L., Buss, S.R., Pitassi, T.: Are there hard examples for Frege systems? In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, pp. 30–56. Birkhäuser, Basel (1995)

    Google Scholar 

  7. Bonet, M.L., Pitassi, T., Raz, R.: Lower bounds for cutting planes proofs with small coefficients. The Journal of Symbolic Logic 62(3), 708–728 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buss, S.R.: Bounded Arithmetic. Bibliopolis, Napoli (1986)

    Google Scholar 

  9. Buss, S.R.: An introduction to proof theory. In: Buss, S.R. (ed.) Handbook of Proof Theory, pp. 1–78. Elsevier, Amsterdam (1998)

    Chapter  Google Scholar 

  10. Cook, S.A.: Feasibly constructive proofs and the propositional calculus. In: Proc. 7th Annual ACM Symposium on Theory of Computing, pp. 83–97 (1975)

    Google Scholar 

  11. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. The Journal of Symbolic Logic 44, 36–50 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39, 68–131 (1935)

    Google Scholar 

  13. Grollmann, J., Selman, A.L.: Complexity measures for public-key cryptosystems. SIAM Journal on Computing 17(2), 309–335 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hájek, P., Pudlák, P.: Metamathematics of First-Order Arithmetic. In: Perspectives in Mathematical Logic, Springer, Berlin (1993)

    Google Scholar 

  15. Köbler, J., Messner, J., Torán, J.: Optimal proof systems imply complete sets for promise classes. Information and Computation 184, 71–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krajíček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory. Encyclopedia of Mathematics and Its Applications, vol. 60. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  17. Krajíček, J.: Interpolation theorems, lower bounds for proof systems and independence results for bounded arithmetic. The Journal of Symbolic Logic 62(2), 457–486 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Krajíček, J., Pudlák, P.: Propositional proof systems, the consistency of first order theories and the complexity of computations. The Journal of Symbolic Logic 54, 1079–1963 (1989)

    Google Scholar 

  19. Krajíček, J., Pudlák, P.: Quantified propositional calculi and fragments of bounded arithmetic. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 36, 29–46 (1990)

    Article  MATH  Google Scholar 

  20. Pudlák, P.: Lower bounds for resolution and cutting planes proofs and monotone computations. The Journal of Symbolic Logic 62, 981–998 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pudlák, P.: On reducibility and symmetry of disjoint NP-pairs. Theoretical Computer Science 295, 323–339 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Razborov, A.A.: On provably disjoint NP-pairs. Technical Report TR94-006, Electronic Colloquium on Computational Complexity (1994)

    Google Scholar 

  23. Sadowski, Z.: On an optimal propositional proof system and the structure of easy subsets of TAUT. Theoretical Computer Science 288(1), 181–193 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sadowski, Z.: Optimal proof systems, optimal acceptors and recursive presentability. Fundamenta Informaticae 79(1–2), 169–185 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Wrathall, C.: Rudimentary predicates and relative computation. SIAM Journal on Computing 7(2), 149–209 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manindra Agrawal Dingzhu Du Zhenhua Duan Angsheng Li

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beyersdorff, O. (2008). Logical Closure Properties of Propositional Proof Systems. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2008. Lecture Notes in Computer Science, vol 4978. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79228-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79228-4_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79227-7

  • Online ISBN: 978-3-540-79228-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics