Skip to main content

Realization Theory for Discrete-Time Semi-algebraic Hybrid Systems

  • Conference paper
Hybrid Systems: Computation and Control (HSCC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4981))

Included in the following conference series:

Abstract

We present realization theory for a class of autonomous discrete-time hybrid systems called semi-algebraic hybrid systems. These are systems in which the state and output equations associated with each discrete state are defined by polynomial equalities and inequalities. We first show that these systems generate the same output as semi-algebraic systems and implicit polynomial systems. We then derive necessary and almost sufficient conditions for existence of an implicit polynomial system realizing a given time-series data. We also provide a characterization of the dimension of a minimal realization as well as an algorithm for computing a realization from a given time-series data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Isidori, A.: Nonlinear Control Systems. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  2. Sontag, E.D.: Polynomial Response Maps. Lecture Notes in Control and Information Sciences, vol. 13. Springer, Heidelberg (1979)

    MATH  Google Scholar 

  3. Sontag, E.D.: Realization theory of discrete-time nonlinear systems: Part I – the bounded case. IEEE Transaction on Circuits and Systems CAS-26(4) (1979)

    Google Scholar 

  4. Fliess, M.: Matrices de Hankel. J. Math. Pures Appl. (23), 197–224 (1973)

    Google Scholar 

  5. Sussmann, H.: Existence and uniqueness of minimal realizations of nonlinear systems. Mathematical Systems Theory 10, 263–284 (1977)

    Article  MathSciNet  Google Scholar 

  6. Jakubczyk, B.: Realization theory for nonlinear systems, three approaches. In: Fliess, M., Hazewinkel, M., (eds.) Algebraic and Geometric Methods in Nonlinear Control Theory, pp. 3–32. D. Reidel Publishing Company (1986)

    Google Scholar 

  7. Wang, Y., Sontag, E.: Generating series and nonlinear systems: analytic aspects, local realizability and I/O representations. Forum Mathematicum (4), 299–322 (1992)

    Google Scholar 

  8. Bartosiewicz, Z.: Realizations of polynomial systems. In: Algebraic and geometric methods in nonlinear control theory., Math. Appl., vol. 29, pp. 45–54. Dordrecht, Reidel (1986)

    Google Scholar 

  9. Wang, Y., Sontag, E.: Algebraic differential equations and rational control systems. SIAM Journal on Control and Optimization (30), 1126–1149 (1992)

    Google Scholar 

  10. Grossman, R., Larson, R.: An algebraic approach to hybrid systems. Theoretical Computer Science 138, 101–112 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Petreczky, M.: Realization theory for linear switched systems: Formal power series approach. Systems and Control Letters 56(9-10), 588–595 (2007)

    Article  MathSciNet  Google Scholar 

  12. Petreczky, M.: Realization theory for bilinear switched systems: A formal power series approach. In: Proc. of 44th IEEE Conference on Decision and Control, pp. 690–695 (2005)

    Google Scholar 

  13. Petreczky, M.: Realization Theory of Hybrid Systems. PhD thesis, Vrije Universiteit, Amsterdam (2006), http://www.cwi.nl/~mpetrec

  14. Petreczky, M.: Hybrid formal power series and their application to realization theory of hybrid systems. In: Proc. 17th International Symposium on Mathematical Theory of Networks and Systems (2006)

    Google Scholar 

  15. Petreczky, M., Pomet, J.B.: Realization theory of nonlinear hybrid systems. In: Proceedings of CTS-HYCON Workshop on Hybrid and Nonlinear Control Systems (2006)

    Google Scholar 

  16. Petreczky, M.: Realization theory for discrete-time piecewise-affine hybrid systems. In: Proc 17th Internation Symposium on Mathematical Theory of Networks and Systems (2006)

    Google Scholar 

  17. Petreczky, M., Vidal, R.: Metrics and topology for nonlinear and hybrid systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 459–472. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Petreczky, M., Vidal, R.: Realization theory of stochastic jump-Markov linear systems. In: Proceedings 46th IEEE Conference on Decision and Control (2007)

    Google Scholar 

  19. Ma, Y., Vidal, R.: Identification of deterministic switched ARX systems via identification of algebraic varieties. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 449–465. Springer, Heidelberg (2005)

    Google Scholar 

  20. Vidal, R.S.S., Sastry, S.: An algebraic geometric approach to the identification of linear hybrid systems. In: IEEE Conference on Decision and Control, pp. 167–172 (2003)

    Google Scholar 

  21. Vidal, R.: Identification of PWARX hybrid models with unknown and possibly different orders. In: Proceedings of the IEEE American Conference on Control, pp. 547–552 (2004)

    Google Scholar 

  22. Kunz, E.: Introduction to commutative algebra and algebraic geometry. Birkhaeuser, Stuttgard (1985)

    Google Scholar 

  23. Cox, D., Little, J., O’Shea, D.: Ideal, varieties, and algorithms. Springer, New York (1997)

    Google Scholar 

  24. Brumfiel, G.W.: Partialy Ordered Rings and Semi-Algebraic Geometry. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  25. Bochnak, J., Coste, M., Roy, M.F.: Real Algebraic Geometry. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  26. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  27. Collins, P., van Schuppen, J.H.: Observability of hybrid systems and Turing machines. In: Proceedings of the 43rd IEEE Conference on Decision and Control, pp. 7–12 (2004)

    Google Scholar 

  28. Ma, Y., Yang, A., Derksen, H., Fossum, R.: Estimation of subspace arrangements with applications in modeling and segmenting mixed data. SIAM Review (to appear, 2007)

    Google Scholar 

  29. Ho, B.L., Kalman, R.E.: Effective construction of linear state-variable models from input/output data. In: Proc. 3rd Allerton Conf. on Circuit and System Theory, pp. 449–459 (1965)

    Google Scholar 

  30. Caines, P.: Linear Stochastic Systems. John Wiley and Sons, New-York (1988)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Magnus Egerstedt Bud Mishra

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Petreczky, M., Vidal, R. (2008). Realization Theory for Discrete-Time Semi-algebraic Hybrid Systems. In: Egerstedt, M., Mishra, B. (eds) Hybrid Systems: Computation and Control. HSCC 2008. Lecture Notes in Computer Science, vol 4981. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78929-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78929-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78928-4

  • Online ISBN: 978-3-540-78929-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics