Skip to main content

Mycorrhizal Fungi and Other Root Endophytes as Biocontrol Agents Against Root Pathogens

  • Chapter
Mycorrhiza

In nature, production of disease-free plants with enhanced yield and compounds of therapeutic value can be mediated through rhizospheric microorganisms. There are increasing environmental concerns over the widespread use of biocontrol measures in general, and alternatively, more sustainable methods of disease control are now being sought. Plant diseases caused by root pathogens need to be controlled in order to maintain the quality and abundance of food, feed and fiber, the prime necessities of life. Different approaches are used for prevention and control of these root pathogens. Among these alternatives are those referred to as biological control; the most obvious and apparently biological control is a potent means of reducing the damage caused by plant pathogens. The potential agents for biocontrol activity are rhizosphere-competent fungi and bacteria which, in addition to their antagonistic activity, are capable of inducing growth responses by either controlling minor pathogens or by producing growth-stimulating factors.

A variety of biological controls are available for use, but further development and effective adoption requires a greater understanding of the complex interactions among plants, people, and the environment. This article emphasizes: (1) information about mycorrhiza and root endophytes, (2) various definitions and key mechanisms of biocontrol, and (3) the relationships between microbial diversity and biological control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alabouvette C, Schippers B, Lemanceau P, Bakker PAHM (1997) Biological control of Fusarium-wilts: towards development of commercial product. In: Boland G J, Kuykendall L D (eds) Plant microbe interactions and biological control. Dekker, New York, pp 15-36

    Google Scholar 

  • Avio L, Pellegrino E, Bonari E, Giovannetti M (2006) Functional diversity of arbuscular mycorrhizal fungal isolates in relation to extraradical mycelial networks. New Phytol 172:347-357

    PubMed  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1992) Interactions between mycorrhizal fungi and other rhizosphere microorganisms. In: Allen MJ (eds) Mycorrhizal functioning. An integrative plant-fungal process. Routledge, Chapman & Hall, New York, pp 163-198

    Google Scholar 

  • Azcón-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens. An overview of the mechanisms involved. Mycorrhiza 6:457-464

    Google Scholar 

  • Bacon CW (1993) Abiotic stress tolerances (moisture and nutrients) and photosynthesis in endophyte-infected tall fescue. Agric Ecosyst Environ 44:123-141

    Google Scholar 

  • Baldock JA, Masiello CA, Gélinas Y, Hedges J I (2004) Cycling and composition of organic matter in terrestrial and marine ecosystems. Mar Chem 92:39-64

    CAS  Google Scholar 

  • Barea J M (1997) Mycorrhiza/bacteria interactions on plant growth promotion. In: Ogoshi A, KobayashiL, Homma Y, Kodama F, Kondon N, Akino S (eds) Plant growth-promoting rhizobacteria, present status and future prospects. OECD, Paris, pp 150-158

    Google Scholar 

  • Bashan Y (1999) Interactions of Azospirillum spp. in soils: a review. Biol Fertil Soils 29:246-256

    CAS  Google Scholar 

  • Bashan Y, Gonzalez LE (1999) Long-term survival of the plant-growth-promoting bacteria Azospirillum brasilense and Pseudomonas fluorescens in dry alginate inoculant. Appl Microbiol Biotechnol 51:262-266

    CAS  Google Scholar 

  • Bedini S, Avio L, Argese E, Giovannetti M (2007) Effects of long-term land use on arbuscular mycorrhizal fungi and glomalin-related soil protein. Agric Ecosys Environ 120:463-466

    CAS  Google Scholar 

  • Benhamou N, Chet I (1997) Cellular and molecular mechanisms involved in the intersection between Trichoderma harzianum and Pythium ultimum. Appl Environ Microbiol 63:2095-2099

    CAS  PubMed  Google Scholar 

  • Bertrand H, Nalin R, Bally R, Cleyet-Marel JC (2001) Isolation and identification of the most efficient plant growth-promoting bacteria associated with canola (Brassica napus). Biol Fert Soils 33:152-156

    Google Scholar 

  • Bestel-Corre G, Dumas-Gaudot E, and Gianinazzi S (2004) Proteomics as a tool to monitor plant-microbe endosymbioses in the rhizosphere. Mycorrhiza 14:1-10

    CAS  PubMed  Google Scholar 

  • Biermann B, Linderman RG (1983) Use of vesicular-arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. New Phytol 95:97-105

    Google Scholar 

  • Bills GF, Polishook JD (1992) Recovery of endophytic fungi from Chamaecyparis thyroides. Sydowia 44:1-12

    Google Scholar 

  • Biological Control of Plant Diseases (2007) Eds. S. Chincholkar and K.G Mukerji. The Haworth Press

    Google Scholar 

  • Boddy L, Griffith GS (1989) Role of endophytes and latent invasion in the development of decay communities in sapwood of angiospermous trees. Sydowia 41:41-73

    Google Scholar 

  • Broek AV, Vanderleyden J (1995) Genetics of the Azospirillum-plant root association. Crit Rev Plant Sci 14:445-466

    Google Scholar 

  • Brunner F, Petrini O (1992) Taxonomic studies of Xylaria species and xylariaceous endophytes by isozyme electrophoresis. Mycol Res 96:723-733

    Google Scholar 

  • Budi SW, van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Appl Environ Microbiol 65:5148-5150

    CAS  PubMed  Google Scholar 

  • Bultman TL, Murphy JC (2000) Do fungal endophytes mediate wound-induced resistance? In: Bacon CW, White JF (eds) Microbial endophytes. Dekker, New York, pp 421-452

    Google Scholar 

  • Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2-9

    Google Scholar 

  • Catska V (1994) Interrelationship between vesicular-arbuscular mycorrhiza and rhizosphere microflora in apple replant disease. Biol Plant 36:99-104

    Google Scholar 

  • Chin-A-Woeng TFC, Thomas-Oates JE, Lugtenberg BJJ, Bloemberg GV (2001). Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391extends the range of biocontrol ability of phenazine1carboxylic acid producing Pseudomonas. Mol Plant Microb Interact 14:1006-1015

    CAS  Google Scholar 

  • Clay K (1987) Effect of fungal endophytes on the seed and seedling biology of Lolium perenne and Festuca arundinaceae. Oecologia 73:358-362

    Google Scholar 

  • Clay K (1990) Fungal endophytes of grasses. Annu Rev Ecol Syst 21:275-297

    Google Scholar 

  • Clay K (1991) Fungal endophytes, grasses and herbivores. In: Barbosa P, Krischik VA, Jones CG (eds) Microbial mediation of plant herbivore interactions. Wiley, New York, pp 199-226

    Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka E A (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951-4959

    CAS  PubMed  Google Scholar 

  • Dahlman DL, Eichenseer H, Siegel MR (1991) Chemical perspective on endophyte grass interactions and their implications to insect herbivory. In: Barbosa P, Krischik VA, Jones CG (eds) Microbial mediation of plant herbivore interactions. Wiley, New York, pp 227-252

    Google Scholar 

  • Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol 36:203-209

    CAS  PubMed  Google Scholar 

  • De Bary A (1866) Morphologie und Physiologi der Pilze, Flechten, und Myxomyceten. [Hofmeister’s Handbook of Physiological Botany. Vol. 2.] Leipzig

    Google Scholar 

  • Defago G, Keel C (1995) Pseudomonads as biocontrol agents of diseases caused by soilborne pathogens In: Hokkanen HMT, Lynch JM (eds) Benefits and risks of introducing biocontrol agents. Cambridge University Press, Cambridge

    Google Scholar 

  • Diedhiou PM, Hallmann J, Oerke EC, Dehne HW (2003) Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato. Mycorrhiza 13:199-204

    CAS  PubMed  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Vande Browk A, Vanderleyden J (1999) Phytostimulatory effect Azospirillum brasilense strains and auxins on wheat. Plant Soil 212:155-164

    CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Response of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:1-9

    Google Scholar 

  • Duchesne LC (1994) Role of ectomycorrhizal fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS Press, St. Paul, Minn., pp 27-45

    Google Scholar 

  • Duijff BJ, Pouhair D, Olivain C, Alabouvette C, Lemanceau P (1998) Implication of systemic induced resistance in the suppression of Fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and nonpathogenic Fusarium oxysporum Fo47. Eur J Plant Pathol 104:903-910

    Google Scholar 

  • Dumas-Gaudot E, Gollotte A, Cordier C, Gianinazzi S, Gianinazzi-Pearson V (2000) Modulation of host defence systems In: Kapulnick Y, Douds Jr DD (eds) Arbuscular mycorrhizas: physiology and functions. Kluwer, Dordrecht, pp 121-140

    Google Scholar 

  • El Zemrany H, Cortet J, Lutz MP, Chabert A, Baudoin E, Haurat J, Maughan N, Félix D, Défago G, Bally R, Moënne-Loccoz Y (2006) Field survival of the phytostimulator Azospirillum lipoferum CRT1 and functional impact on maize crop, biodegradation of crop residues, and soil faunal indicators in a context of decreasing nitrogen fertilization. Soil Biol Biochem 38:1712-1726

    CAS  Google Scholar 

  • Farmer E E (2007) Plant biology: jasmonate perception machines. Nature 448:659-660

    CAS  PubMed  Google Scholar 

  • Fisher PJ, Anson AE, Pertini O (1984a) Antibiotic activity of some endophytic fungi from ericaceous plants. Bot Helvet 94:249-253

    Google Scholar 

  • Fisher PJ, Anson AE, Pertini O (1984b) Novel antibiotic activity of an endophyte Cryptosporiopsis sp. isolated from Vaccinium myrtillus. Trans Br Mycol Soc 83:145-148

    Google Scholar 

  • Fitter AH, Garbaye J (1994) Interactions between mycorrhizal fungi and other soil organisms. Plant Soil 159:123-132

    Google Scholar 

  • Franken P, Requena N (2001) Analysis of gene expression in arbuscular mycorrhizas: new approaches and challenges. New Phytol 150:517-523

    CAS  Google Scholar 

  • Gange AC, Whitfield L, Ixer-Pitfield S (2004) Assessment of arbuscular mycorrhizal fungi as potential biocontrol agents for Poa annua L. in fine turf. J Turfgrass Sports Surface Sci 80

    Google Scholar 

  • Garbeva P, van Veen JA, van Elsas J D (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243-270

    CAS  PubMed  Google Scholar 

  • Garcia-Garrido JM, Ocampo JA (1989) Effect of VA mycorrhizal infection of tomato on damage caused by Pseudomonas syringae. Soil Biol Biochem 21:165-167

    Google Scholar 

  • Garcia-Garrido JM, Tribak M, Rejon-Palomares A, Ocampo JA, Garcia-Romera I (2000) Hydrolytic enzymes and ability of arbuscular mycorrhizal fungi to colonize roots. J Exper Bot 51:1443-1448

    CAS  Google Scholar 

  • Garmendia I, Goicoechea N, Aguirreolea J (2005) Moderate drought influences the effect of arbuscular mycorrhizal fungi as biocontrol agents against Verticillium-induced wilt in pepper. Mycorrhiza 15:345-356

    PubMed  Google Scholar 

  • Gasoni L, Stegman De Gurfinkel B (1997) The endophyte Cladorrhinum foecundissimum in cotton roots: phosphorus uptake and host growth. Mycol Res 101:867-870

    Google Scholar 

  • Ghimire SR, Hyde KD (2004) Fungal Endophytes. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant Surface Microbiology. Springer-Verlag Berlin Heidelberg, pp 281-292

    Google Scholar 

  • Gianinazzi-Pearson V, Dumas-Gaudot E, Gollotte A, Tahiri-Alaoui A, Gianinazzi S (1996) Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytol 133:45-57

    Google Scholar 

  • Giovannetti M (2000) Spore germination and pre-symbiotic mycelial growth In: Kapulnick Y, Douds DDJr. (eds) Arbuscular mycorrhizas: physiology and functions. Kluwer, Dordrecht, pp 47-68

    Google Scholar 

  • Giri B, Giang P H, Kumari R, Prasad R, Sachdev M, Garg A P, Oelmuller R and Varma A (2004) Mycorrhizosphere: strategies and functions. In: Buscot F, Varma A (eds) Micro-organisms in soils: roles in genesis and functions. Soil biology series. Springer, Heidelberg, pp 213-252

    Google Scholar 

  • Glandorf DC, Verheggen P, Jansen T, Jorritsma JW, Smit E, Leefang P, Wernars K, Thomashow LS, Laureijs E, Thomas-Oates JE, Bakker PA, Van Loon LC (2001) Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat. Appl Environ Microbiol 67:3371-3378

    CAS  PubMed  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can. J. Microbiol 41:109-117

    CAS  Google Scholar 

  • Guenoune D, Galili S, Phillips DA, Volpin H, ChetOkon Y, Kapulnik Y (2001) The defense response elicited by the pathogen Rhizoctonia solani is suppressed by colonization of the AM-fungus Glomus intraradices. Plant Sci. 160:925-932

    CAS  PubMed  Google Scholar 

  • Haas D, Keel C, Laville J, Maurhofer M, Oberliansli T, Schnider U, Voisard C, Wüthrich B, Defago G (1991) Secondary metabolites of Pseudomonas fluorescens strain CHA0 involved in the suppresion of root diseases. In: Hennecke H, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions. Kluwer, Dordrecht, pp 450-456

    Google Scholar 

  • Hameeda B, Harini G, Rupela OP, Reddy G. (2007) Effect of composts or vermicomposts on sorghum growth and mycorrhizal colonization. Afr J Biotechnol 6:009-012

    Google Scholar 

  • Harman GE, Howell CR, Vitarbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43-56

    CAS  PubMed  Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manage Sci 60:149-157

    CAS  Google Scholar 

  • He P, Chintamanani S, Chen Z, Zhu L, Kunkel BN, Alfano JR, Tang X, Zhou JM (2004) Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine. Plant J 37:589-602

    CAS  PubMed  Google Scholar 

  • Hoitink HAJ, Boehm MJ (1999) Biocontrol within the context of soil microbial communities: a substrate dependent phenomenon. Annu Rev Phytopathol 37:427-446

    CAS  PubMed  Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Métraux J P (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microb Interact 16:851-858

    CAS  Google Scholar 

  • James HG (2001) What Do Root Pathogens See in Mycorrhizas? New Phytol 149:357-359

    Google Scholar 

  • Jordaan A, Taylor J E, Rossenkhan R (2006) Occurrence and possible role of endophytic fungi associated with seed pods of Colophospermum mopane (Fabaceae)in Botswana. (Published online) http://www.sciencedirect.com/science/journal/02546299

  • Kimmons CA (1990) Nematode reproduction on endophyte infected and endophyte free tall fescue. Plant Dis 74:757-761

    Google Scholar 

  • Kiss L (2003) A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Manage Sci 59:475-483

    CAS  Google Scholar 

  • Kloepper JW (1994) Plant growth-promoting rhizobacteria (other systems) In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, pp 111-118

    Google Scholar 

  • Kulik MM (1988). Observations by scanning electron and brightfield microscopy on the mode of penetration of soybean seedlings by Phomopsis phaseoli. Plant Dis 72:115-118

    Google Scholar 

  • Kuster H, Becker A, Firnhaber C, Hohnjec N, Manthey K, Perlick A M, Bekel T, Dondrup M, Henckel K, Goesmann A, Meyer F, Wipf D, Requena N, Hildebrandt U, Hampp R, Nehls U, Krajinski F, Franken P, Puhler A (2007) Development of bioinformatic tools to support EST-sequencing, in silico-and microarray-based transcriptome profiling in mycorrhizal symbioses. Phytochemistry 38:19-32

    Google Scholar 

  • Lacey LA, Frutos R, Kaya HK,Vail P (2001) Insect pathogens as biological control agents: do they have a future? Biol Control 21:230-248

    Google Scholar 

  • Lambrecht M, Okon Y, Vande Broek A, Vanderleyden J (2000) Indole-3-acetic acid, a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol 8:298-300

    CAS  PubMed  Google Scholar 

  • Lemanceau P, Alabouvette C (1993). Suppression of Fusarium-wilts by fluorescent pseudomonads: mechanisms and applications. Biocontrol Sci Technol 3:219-234

    Google Scholar 

  • Lewis DH (1973) Concept in fungal nutrition and the origin of biotrophy. Biol Rev 48:261-278

    Google Scholar 

  • Li HY, Yang GD, Shu HR, Yang YT, Ye BX, Nishida I, Zheng CC (2006) Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Plant Cell Physiol 47:154-63

    CAS  PubMed  Google Scholar 

  • Linderman RG (1994) Role of VAM fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS Press, St Paul, pp 1-26

    Google Scholar 

  • Linderman RG (2000) Effects of mycorrhizas on plant tolerance to diseases.In: Kapulnik Y, Douds DD Jr. (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, pp 345-365

    Google Scholar 

  • Marschner P, Rengel Z (2007) Nutrient Cycling in Terrestrial Ecosystems. Springer Verlag Germany

    Google Scholar 

  • McKellar ME, Nelson EB (2003) Compost-induced suppression of Pythium damping-off is mediated by fatty-acid-metabolizing seed-colonizing microbial communities. Appl Environ Microbiol 69:452-460

    CAS  PubMed  Google Scholar 

  • Miller JD (1986). Toxic metabolites of epiphytic and endophytic fungi of conifers needles. In: Fokkema NJ, Heuvel JVD (eds) Microbiology of phyllosphere. Cambridge University Press, Cambridge, pp 223-231

    Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD Jr. (eds) Arbuscular mycorrhizas: physiology and functions. Kluwer, Dordrecht, pp 3-18

    Google Scholar 

  • Morris PF, Ward EWR (1992) Chemoattraction of zoospores of the plant soybean pathogen, Phytophthora sojae, by isoflavones. Physiol Mol Plant Pathol 40:17-22

    CAS  Google Scholar 

  • Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (zygomycetes): a new order glomales, two new suborders, glomineae and gigasporineae and gigasporaceae, with an amendation of glomaceae. Mycotaxon 37:471-491

    Google Scholar 

  • Morton JB, Redecker D (2001) Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93:181-195

    Google Scholar 

  • Mukerji KG, Ciancio A (2007) Mycorrhizae in the integrated pest and disease management. In: Ciancio A, Mukerji KG (eds) General concepts in integrated pest and disease management, Springer, Heidelberg, pp 245-266

    Google Scholar 

  • Mukerji KG, Mandeep and Varma A (1998) Mycorrhizosphere microrganisms: screening and evaluation. In: Varma A (ed) Mycorrhiza manual. Springer, Heideberg, pp 85-98

    Google Scholar 

  • Numberger T, Brunner F, Kemmerling B and Piater L (2004) Innate immunity in plants and animals:striking similarities and obvious differences. Immunol Rev 198:249-266

    Google Scholar 

  • O’Donnell J, Dickinson CH (1980) Pathogenicity of Alternaria and Cladosporium isolated on Phaseolus. Trans Br Mycol Soc 74:335-342

    Google Scholar 

  • Ocón A, Hampp R and Requena N (2007) Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi. New Phytol 174:879-891

    PubMed  Google Scholar 

  • Odum EP (1953) Fundamentals of ecology. Saunders, Philadelphia

    Google Scholar 

  • Ongena M, Duby F, Rossignol F, Fouconnier ML, Dommes J and Thonart P (2004) Stimulation of the lipoxygenase pathway is associated with systemic resistance induced in bean by a nonpathogenic Pseudomonas strain. Mol. Plant Microb Interact 17:1009-1018

    CAS  Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens in the biocontrol of Sclerotium rolfsii. Phytopathology 78:84-88

    CAS  Google Scholar 

  • Pal KK, B McSpadden Gardener (2006) Biological control of plant pathogens. The plant health instructor DOI: 10.1094/PHI-A-2006-1117-02

    Google Scholar 

  • Palumbo JD, Yuen GY, Jochum CC, Tatum K, and Kobayashi DY (2005) Mutagenesis of beta-1,3-glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward Bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. Phytopathology 95:701-707

    CAS  PubMed  Google Scholar 

  • Pawlowska TE, Taylor JW (2004) Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427:733-737

    CAS  PubMed  Google Scholar 

  • Petrini O (1991) Fungal. endophytes of tree leaves. In: Andrews J, Hirano S (eds) Microbila ecology of leaves. Springer, Heidelberg, pp 179-197

    Google Scholar 

  • Petrini O (1996) Ecological and physiological aspect of host specificity in endophytic fungi. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants. APS Press, St Paul, Minn

    Google Scholar 

  • Petrini O, Fisher PJ, Petrini LE (1992) Fungal endophytes of bracken (Pteridium aquilinum) with some reflections on their use in biological control. Sydowia 44:282-293

    Google Scholar 

  • Probanza A, Lucas García JA, Ruiz Palomino M, Ramos B, Gutiérrez Mañero FJ (2002) Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumillus CECT 5105). Appl Soil Ecol 20:75-84

    Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4 :210-222

    CAS  Google Scholar 

  • Ramarathnam R, Dilantha FWG (2006) Preliminary phenotypic and molecular screening for potential bacterial biocontrol agents of Leptosphaeria maculans, the blackleg pathogen of canola. Biocontrol Sci Technol 16:567-582

    Google Scholar 

  • Redecker D, Morton JB, Bruns TD (2000) Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol Phylogenet Evol 14:276-284

    CAS  PubMed  Google Scholar 

  • Requena N, Perez-Solis E, Azcón-Aguilar C, Jeffries P, Barea JM (2001) Management of indige-nous plant-microbe symbioses aids restoration of desertified. Appl Environ Microbiol 67:495-498

    CAS  PubMed  Google Scholar 

  • Requena N, Serrano E, Ocon A, Breuninger M (2007) Plant signals and fungal perception during arbuscular mycorrhiza establishment. Phytochemistry 68:33-40

    CAS  PubMed  Google Scholar 

  • Ross EW, Marx DM (1972) Susceptibility sand pine to Phytophthora cinnamomi. Phytopathology 62:1197-1200

    Article  Google Scholar 

  • Sanders IR, Clapp JP, Wiemken A (1996) The genetic diversity of arbuscular mycorrhizal fungi in natural ecosystems -a key to understanding the ecology and functioning of the mycorrhizal symbiosis. New Phytol 133:123-134

    Google Scholar 

  • Scheffknecht S, Mammerler R, Steinkellner S, Vierheilig H (2006) Root exudates of mycorrhizal tomato plants exhibit a different effect on microconidia germination of Fusarium oxysporum f. sp. lycopersici than root exudates from non-mycorrhizal tomato plants. Mycorrhiza 16:365-70

    CAS  PubMed  Google Scholar 

  • Schulz B, Guske S, Dammann U, Boyle C (1998) Endophyte-host interactions.II. Defining symbiosis of the endophyte-host interaction. Symbiosis 25:213-227

    Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1421-1423

    Google Scholar 

  • Serfling A, Wirsel SGR, Lind V, Deising HB (2007) Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field Conditions. Phytopathology 97:523-531

    CAS  PubMed  Google Scholar 

  • Shahollari B, Varma A, Oelmüller R (2005) Expression of a receptor kinase in roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton-X-100 insoluble plasma membrane microdomains. J Plant Physiol 162:945-958

    CAS  PubMed  Google Scholar 

  • Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmuller R (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeo-domain transcription factor that binds to a conserved motif in their promoters. J Biol Chem 280:26241-26247

    CAS  PubMed  Google Scholar 

  • Shoresh M, Yedidia I, Chet I (2005) Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95:76-84

    CAS  PubMed  Google Scholar 

  • Siddiqui Z, Akhtar M (2006) Biological control of root-rot disease complex of chickpea by AM fungi. Arch Phytopathol Plant Prot 39:389-395

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Stone JK (1988) Fine structure of latent infection by Rhabdocline parkeri on Douglas fir, with observation on uninfected epidermal cells. Can J Bot 66:45-54

    Google Scholar 

  • Suske J, Acker G (1989) Identification of endophytic hyphae of Lophodermium piceae in tissues of green, symptomless Norway spruce needles by immunoelectorn microscopy. Can J Bot 67:1768-1774

    Google Scholar 

  • Tejesvi MV, Mahesh B, Nalini MS, Prakash HS, Kini KR, Subbiah V, Shetty HS (2006) Fungalendophyte assemblages from ethnopharmaceutically important medicinal trees. Can J Microbiol 52:427-35

    CAS  PubMed  Google Scholar 

  • Thygesen K, Larsen J, Bødker L (2004) Arbuscular Mycorrhizal Fungi Reduce Development of Pea Root-rot caused by Aphanomyces euteiches using Oospores as Pathogen Inoculum. Eur J Plant Pathol 110:411-419

    CAS  Google Scholar 

  • Van de Broek A, Lambrecht M, Vanderleyden J (1999) Auxins upregulate expression of the indole-3-pyruvate decaboxylase gene from Azospirillum brasilense. J Bacteriol 181:1338-1342

    CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453-483

    PubMed  Google Scholar 

  • Varma A, Chincholkar S (eds) (2007) Microbial siderophores, Springer, Heidelberg

    Google Scholar 

  • Varma A, Verma S, Sudha, Sahay N, Bütehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol. 65:2741-2744

    CAS  PubMed  Google Scholar 

  • Vierheilig H, Piché Y (2002) Signalling in arbuscular mycorrhiza: facts and hypotheses In: Buslig B, Manthey J (eds) Flavonoids in cell functions. Kluwer, New York, pp 23-29

    Google Scholar 

  • Walker C, Schüßler A (2004) Nomenclatural clarifications and new taxa in the Glomeromycota. Mycol Res 108:981-982

    Google Scholar 

  • Waller W, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt stress tolerance, disease resistance and higher yield. Proc Natl Acad Sci USA 102:13386-13391

    CAS  PubMed  Google Scholar 

  • Weller DM, Raaijmakers J, McSpadden Gardener B, Thomashow LM (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309-348

    CAS  PubMed  Google Scholar 

  • Wilson D (1995) Endophyte -the evolution of term, a classification of its use and definition. Oikos 73:274-276

    Google Scholar 

  • Ziedan EHE (2006) Manipulating endophytic bacteria for biological control to soil borne diseases of peanut. J Appl Sci Res 2:497-502

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Varma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tripathi, S., Kamal, S., Sheramati, I., Oelmuller, R., Varma, A. (2008). Mycorrhizal Fungi and Other Root Endophytes as Biocontrol Agents Against Root Pathogens. In: Varma, A. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78826-3_14

Download citation

Publish with us

Policies and ethics