Skip to main content

Scaling of Plane Figures That Assures Faithful Digitization

  • Conference paper
Combinatorial Image Analysis (IWCIA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4958))

Included in the following conference series:

  • 511 Accesses

Abstract

In this paper we propose a method for obtaining a faithful digitization of certain broad classes of plane figures, so that the original continuous object and its digitization feature analogous geometric properties. The approach is based on an appropriate scaling of a given figure so that the obtained one admits digitization satisfying some desirable conditions. Informally speaking, we show that from certain point on, a continuous object and its digitization are in a sense equivalent. In terms of computational complexity, the scaling factor is easily computable. As a corollary of the presented theory we prove the strong NP-hardness of the problem of obtaining a polyhedron reconstruction in which the facets are trapezoids or triangles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asano, Ta., Asano, Te., Imai, H.: Partitioning a polygonal region into trapezoids. J. ACM 33, 290–312 (1986)

    Article  MathSciNet  Google Scholar 

  2. Brimkov, V.E.: Discrete volume polyhedrization: Complexity and bounds on performance. In: Tavares,, et al. (eds.) Computational Modelling of Objects Represented in Images: Fundamentals, Methods and Applications. Proceedings of the International Symposium CompIMAGE 2006, Coimbra (Portugal), October 21-22, pp. 117–122. Taylor & Francis, Abington (2006)

    Google Scholar 

  3. Chaselle, B., Dobkin, D.P.: Decomposing a polygon into its convex parts. In: Proc. 11th Annual ACM Sympos. on Theory Comput., pp. 38–48 (1979)

    Google Scholar 

  4. Debled-Renesson, I., Reveillès, J.-P.: A linear algorithm for segmentation of digital curves. International Journal of Pattern Recognition and Artificial Intelligence 9(4), 635–662 (1995)

    Article  Google Scholar 

  5. Feschet, F., Tougne, L.: On the min dss problem of closed discrete curves. Discrete Applied Mathematics 151(1-3), 138–153 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Garey, M., Johnson, D.: Computers and Intractability. W.H. Freeman & Company, San Francisco (1979)

    MATH  Google Scholar 

  7. Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  8. Latecki, L.J., Rosenfeld, A.: Recovering a polygon from noisy data. Computer Vision and Image Understanding 86, 1–20 (2002)

    Article  Google Scholar 

  9. Lingas, A.: The power of non-rectilinear holes. In: Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 369–383. Springer, Heidelberg (1982)

    Chapter  Google Scholar 

  10. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)

    Google Scholar 

  11. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)

    MATH  Google Scholar 

  12. Sivignon, I., Dupont, F., Chassery, J.-M.: Decomposition of three-dimensional discrete objects surface into discrete plane pieces. Algorithmica 38, 25–43 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Stelldinger, P., Latecki, L.J., Siqueira, M.: 3D object digitization: Topological equivalence between a 3D object and the reconstruction of its digital image. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1), 126–140 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Valentin E. Brimkov Reneta P. Barneva Herbert A. Hauptman

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brimkov, V.E. (2008). Scaling of Plane Figures That Assures Faithful Digitization. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds) Combinatorial Image Analysis. IWCIA 2008. Lecture Notes in Computer Science, vol 4958. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78275-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78275-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78274-2

  • Online ISBN: 978-3-540-78275-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics