Skip to main content

A Fluctuating Energy Model for Dense Granular Flows

  • Conference paper
Traffic and Granular Flow ’07

Summary

We address the slow, dense flow of granular materials as a continuum with the incompressible Navier-Stokes equations plus the fluctuating energy balance for granular temperature. The pseudo-fluid is given an apparent viscosity, for which we choose an Arrhenius-like dependence on granular temperature; the fluctuating energy balance includes a ‘mobility enhancing’ term due to shear stress and a jamming, dissipative term which we assume to depend on the isotropic part of the stress tensor and on shear rate. After having proposed a ‘chemical’ interpretation of the phenomenology described by the model in terms of reaction rates, we report results for some 2-D standard geometries of flow, which agree semi-quantitatively with experimental and DEM observations. In particular, our model well reproduces the formation of stagnant zones of a characteristic shape (e.g. wedge-shaped static zones in a silo with flat bottom) without prescribing them a-priori with erosion techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jaeger, H. M., Nagel, S. R., and Behringer, R. P. (1996) Rev. Mod. Phys. 68(4), 1259–1273.

    Article  Google Scholar 

  2. King, P., Lopez-Alcaraz, P., Pacheco-Martinez, H., Clement, C., Smith, A., and Swift, M. (2007) Eur Phys J E Soft Matter 22(3), 219–226.

    Article  Google Scholar 

  3. Cundall, P. A. and Strack, O. D. L. (1979) Géotechnique 29(1), 47–65.

    Article  Google Scholar 

  4. Pouliquen, O. and Chevoir, F. (2002) Comptes Rendus Physique 3, 163–175.

    Article  Google Scholar 

  5. GDR Midi (2004) Eur. Phys. J. E 14(4), 341–365.

    Article  Google Scholar 

  6. Jop, P., Forterre, Y., and Pouliquen, O. (2006) Nature 441, 727–730.

    Article  Google Scholar 

  7. Pouliquen, O., Cassar, C., Forterre, Y., Jop, P., and Nicolas, M. (2006) In Proc. Powders & Grains 2005: A. A. Balkema, Rotterdam.

    Google Scholar 

  8. da Cruz, F., Emam, S., Prochnow, M., Roux, J.-J., and Chevoir, F. (2005) Phys. Rev. E 72, 021309.

    Article  Google Scholar 

  9. Goddard, J. D. (1986) Acta Mechanica 63(1-4), 3–13.

    Article  MATH  Google Scholar 

  10. Babić, M. (1997) Int. J. Engng. Sci. 35(5), 523–548.

    Article  MATH  Google Scholar 

  11. Goddard, J. D. (to appear) In Mathematical models of granular matter, Lecture Notes in Mathematics. Berlin: Springer.

    Google Scholar 

  12. Savage, S. B. (1998) J. Fluid Mech. 377, 1–26.

    Article  MATH  MathSciNet  Google Scholar 

  13. Artoni, R., Santomaso, A., and Canu, P. (to appear) Europhys. Lett. e-print: cond-mat/0705.3726.

  14. Hibler, W. D. (1977) J. Geophys. Res. 82, 3932–3938.

    Article  Google Scholar 

  15. Doolittle, A. K. (1951) J. Appl. Phys. 22, 1031–1035.

    Article  Google Scholar 

  16. Cohen, M. H. and Grest, G. S. Aug 1979 Phys. Rev. B 20(3), 1077–1098.

    Article  Google Scholar 

  17. Edwards, S. F. and Oakeshott, R. B. S. (1989) Physica A 157, 1080–1090.

    Article  MathSciNet  Google Scholar 

  18. Losert, W., Bocquet, L., Lubensky, T. C., and Gollub, J. P. Phys. Rev. Lett. 85(7), 1428–1431.

    Google Scholar 

  19. Bocquet, L., Losert, W., Schalk, D., Lubensky, T. C., and Gollub, J. P. Phys. Rev. E 65, 011307.

    Google Scholar 

  20. Bocquet, L., Errami, J., and Lubensky, T. C. Oct 2002 Phys. Rev. Lett. 89(18), 184301.

    Article  Google Scholar 

  21. Brown, R. L. and Hawksley, P. G. W. (1947) Fuel 27, 159–173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Cécile Appert-Rolland François Chevoir Philippe Gondret Sylvain Lassarre Jean-Patrick Lebacque Michael Schreckenberg

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Artoni, R., Santomaso, A., Canu, P. (2009). A Fluctuating Energy Model for Dense Granular Flows. In: Appert-Rolland, C., Chevoir, F., Gondret, P., Lassarre, S., Lebacque, JP., Schreckenberg, M. (eds) Traffic and Granular Flow ’07. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77074-9_53

Download citation

Publish with us

Policies and ethics