Skip to main content

Design for Product Embedded Disassembly

  • Chapter
Evolutionary Computation in Practice

Part of the book series: Studies in Computational Intelligence ((SCI,volume 88))

This chapter discusses an application of multi-objective genetic algorithm for designing products with a built-in disassembly means that can be triggered by the removal of one or a few fasteners at the end of the product lives. Given component geometries, the method simultaneously determines the spatial configuration of components, locators and fasteners, and the end-of-life (EOL) treatments of components and subassemblies, such that the product can be disassembled for the maxim profit and minimum environmental impact through recycling and reuse via domino-like “self-disassembly” process. A multi-objective genetic algorithm is utilized to search for Pareto optimal designs in terms of 1) satisfaction of the distance specification among components, 2) efficient use of locators on components, 3) profit of EOL scenario, and 4) environmental impact of EOL scenario. The method is applied to a simplified model of the Power Mac G4 cube® for demonstration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aanstoos, T.A., Torres, V.M., and Nichols, S.P. (1998) Energy model for end-of-life computer disposition, IEEE Transactions on components, packaging, and manufacturing technology, 21(4): 295–301.

    Article  Google Scholar 

  2. Baldwin, D.F., Abell, TE., Lui, M.-C., De Fazio, T.L., and Whitney, D.E. (1992) An integrated computer aid for generating and evaluating assembly sequences for mechanical products, IEEE Transactions on Robotics and Automation, 7(1): 78–94.

    Article  Google Scholar 

  3. Beasley, D. and Martin, R.R. (1993) Disassembly sequences for objects built from unit cubes, Journal of Compute-Aided Design, 25(12): 751–761.

    Article  MATH  Google Scholar 

  4. Bonenberger, P.R. (2000) The First Snap-Fit Handbook: Creating Attachments for Plastic Parts, Hanser Gardner Publications, München, Germany.

    Google Scholar 

  5. Boothroyd, G. and Alting, L. (1992) Design for assembly and disassembly, Annals of CIRP, 41(22): 625–636.

    Article  Google Scholar 

  6. Boothroyd, G., Dewhurst, P., and Knight, W. (1994) Product Design for Manufacture and Assembly, Marcel Dekker, Inc., New York, NY.

    Google Scholar 

  7. Caudill, J.R., Zhou, M., Yan, P., and Jim, J. (2002) Multi-life cycle assessment: an extension of traditional life cycle assessment, In: M.S. Hundal (ed.), Mechanical Life Cycle Handbook, Marcel Dekker. New York, NY, pages 43–80.

    Google Scholar 

  8. Chen, R.W., Navinchandra, D., and Prinz, F. (1993) Product design for recyclability: a cost benefit analysis model and its application, IEEE Transactions on Components, Packaging, and Manufacturing Technology, 17(4): 502–507.

    Article  Google Scholar 

  9. Chen, S.-F., Oliver, J.H., Chou, S.-Y., and Chen, L.-L. (1997) Parallel disassembly by onion peeling, Transactions of ASME, Journal of Mechanical Design, 119(22): 267–274.

    Article  Google Scholar 

  10. Corcoran III, A.L. and Wainwright, R.L. (1992) A genetic algorithm for packing in three dimensions, Proceedings of the ACM/SIGAPP Symposium on Applied Computing, Kansas City, Missouri, pages 1021–1030.

    Google Scholar 

  11. Das, S.K., Yedlarajiah, P., and Narendra, R. (2000) An approach for estimating the end-of-life product disassembly effort and cost, International Journal of Production Research, 38(3): 657–673.

    Article  MATH  Google Scholar 

  12. De Fazio, T.L. and Whitney, D.E. (1987) Simplified generation of all mechanical assembly, IEEE Transactions of Robotics and Automation, 3(6): 640–658.

    Article  Google Scholar 

  13. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6(2): 182–197.

    Article  Google Scholar 

  14. Desai, A. and Mital, A. (2003) Evaluation of disassemblability to enable design for disassembly in mass production, International Journal of Industrial Ergonomics, 32(4): 265–281.

    Article  Google Scholar 

  15. Dutta, D. and Woo, T.C. (1995) Algorithm for multiple disassembly and parallel assemblies, Transactions of ASME, Journal of Engineering for Industry, 117: 102–109.

    Article  Google Scholar 

  16. Fonseca, C.M. and Fleming, P.J. (1993) Genetic algorithms for multiobjective optimization: formulation, discussion and generalization, Proceedings of the 5th International Conference on Genetic Algorithms, July 17–22, Urbana-Champaign, IL, pages 416–423.

    Google Scholar 

  17. Fujita, K., Akagi, S., and Shimazaki, S. (1996) Optimal space partitioning method based on rectangular duals of planar graphs, JSME International Journal, 60: 3662–3669.

    Google Scholar 

  18. Glover, F. (1974) Heuristics for Integer Programming using Surrogate Constraints, Business Research Division, University of Colorado.

    Google Scholar 

  19. Glover, F. (1986) Further paths for integer programming and links to artificial intelligence, Journal of Computer and Operations Research, 13(5): 533–549.

    Article  MATH  MathSciNet  Google Scholar 

  20. Goggin, K. and Browne, J. (2000) The resource recovery level decision for end-of-life products, Production Planning and Control, 11(7): 628–640.

    Article  Google Scholar 

  21. Goosey, M. and Kellner, R. (2003) Recycling technologies for the treatment of end of life printed circuit boards (PCBs), Circuit World, 29(3): 33–37.

    Article  Google Scholar 

  22. Grignon, P.M. and Fadel, G.M. (1999) Configuration design optimization method, Proceedings of the ASME Design Engineering Technical Conferences and Computers in Engineering Conference, September 12–15, Las Vegas, Nevada, DETC99/DAC-8575.

    Google Scholar 

  23. Homem dé Mello, L.S. and Sanderson, A.C. (1990) AND/OR graph representation of assembly plans, IEEE Transactions on Robotics and Automation, 6(2): 188–199.

    Article  Google Scholar 

  24. Homem dé Mello, L.S. and Sanderson, A.C. (1991) A correct and complete algorithm for generation of mechanical assembly sequences, IEEE Transactions on Robotics and Automation, 7(2): 228–240.

    Article  Google Scholar 

  25. Hula, A., Jalali, K., Hamza, K., Skerlos, S., and Saitou, K. (2003) Multi-criteria decision making for optimization of product disassembly under multiple situations, Environmental Science and Technology, 37(23): 5303–5313.

    Article  Google Scholar 

  26. Jain, S. and Gea, H.C. (1998) Two-dimensional packing problems using genetic algorithm, Journal of Engineering with Computers, 14: 206–213.

    Article  Google Scholar 

  27. Kaufman, S.G., Wilson, R.H., Jones, R.E., Calton, T.L., and Ames, A.L. (1996) The Archimedes 2 mechanical assembly planning system, Proceedings of the IEEE International Conference on Robotics and Automation, April, 1996, Minneapolis, Minnesota, pages 3361–3368.

    Google Scholar 

  28. Kroll, E., Beardsley, B., and Parulian, A. (1996) A methodology to evaluate ease of disassembly for product recycling, IIE Transactions, 28(10): 837–845.

    Google Scholar 

  29. Kolli, A., Cagan, J., and Rutenbar, R. (1996) Packing of generic, three- dimensional components based on multi-resolution modeling, Proceedings of the ASME Design Engineering Technical Conferences and Computers in Engineering Conference, August 18–22, Irvine, California, DETC/DAC-1479.

    Google Scholar 

  30. Kuehr, R. and Williams, E. (Eds.) (2003) Computers and the Environment, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  31. Kuo, T. and Hsin-Hung, W. (2005) Fuzzy eco-design product development by using quality function development, Proceedings of the EcoDesign: Fourth International Symposium on Environmentally Conscious Design and Inverse Manufacturing, December 12–14, Tokyo, Japan, 2B-3-3F.

    Google Scholar 

  32. Lambert, A.J.D. (1999) Optimal disassembly sequence generation for combined material recycling and part reuse, Proceedings of the IEEE International Symposium on Assembly and Task Planning, Portugal, pages 146–151.

    Google Scholar 

  33. Lee, S. and Shin, Y.G. (1990) Assembly planning based on geometric reasoning, Computer and Graphics, 14(2): 237–250.

    Article  Google Scholar 

  34. Li, J.R., Tor, S.B., and Khoo, L.P. (2002) A hybrid disassembly sequence planning approach for maintenance, Transactions of ASME, Journal of Computing and Information Science in Engineering, 2(1): 28–37.

    Article  Google Scholar 

  35. Matsui, K., Mizuhara, K., Ishii, K., and Catherine, R.M. (1999) Development of products embedded disassembly process based on end-of-life strategies, Proceedings of EcoDesign: First International Symposium on Environmentally Conscious Design and Inverse Manufacturing, February 1–3, Tokyo, Japan, pages 570–575.

    Google Scholar 

  36. Minami, S., Pahng, K.F., Jakiela, M. J., and Srivastave, A. (1995) A cellular automata representation for assembly simulation and sequence generation, Proceedings of the IEEE International Symposium on Assembly and Task Planning, August 10–11, Pittsburgh, Pennsylvania, pages 56–65.

    Google Scholar 

  37. O’Shea, B., Kaebernick, H., Grewal, S.S., Perlewitz, H., Müller, K., and Seliger, G. (1999) Method for automatic tool selection for disassembly planning, Assembly Automation, 19(1): 47–54.

    Article  Google Scholar 

  38. Reap, J. and Bras, B. (2002) Design for disassembly and the value of robotic semi-destructive disassembly, Proceedings of the ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference, September 29 – October 2, Montreal, Canada, DETC2002/DFM-34181.

    Google Scholar 

  39. Rose, C.M. and Stevels, A.M. (2001) Metrics for end-of-life strategies (ELSEIM), Proceedings of the IEEE International Symposium on Electronics and the Environment, May 7–9, Denver, Colorado, pages 100–105.

    Google Scholar 

  40. Sodhi, R., Sonnenberg, M. and Das, S. (2004) Evaluating the unfastening effort in design for disassembly and serviceability, Journal of Engineering Design, 15(1): 69–90.

    Article  Google Scholar 

  41. Srinivasan, H. and Gadh, R. (2000) Efficient geometric disassembly of multiple components from an assembly using wave propagation, Transactions of ASME, Journal of Mechanical Design, 122(2): 179–184.

    Article  Google Scholar 

  42. Sung, R.C.W., Corney, J.R., and Clark, D.E.R. (2001) Automatic assembly feature recognition and disassembly sequence generation, Transactions of ASME, Journal of Computing and Information Science in Engineering, 1(4): 291–299.

    Article  Google Scholar 

  43. Takeuchi, S. and Saitou, K. (2005) Design for product-embedded disassembly, Proceedings of the ASME Design Engineering Technical Conferences, Long Beach, California, September 24–28, DETC2005-85260.

    Google Scholar 

  44. Takeuchi, S. and Saitou, K. (2006) Design for optimal end-of-life scenario via product-embedded disassembly, Proceedings of the ASME Design Engineering Technical Conferences, Philadelphia, Pennsylvania, September 10–13, DETC2006-99475.

    Google Scholar 

  45. Williams, E.D. and Sasaki, Y. (2003) Energy analysis of end-of-life options for personal computers: resell, upgrade, recycle, Proceedings of the IEEE International Symposium on Electronics and the Environment, May 19–22, Boston, MA, pages 187–192.

    Google Scholar 

  46. Woo, T.C. and Dutta, D. (1991) Automatic disassembly and total ordering in three dimensions, Transactions of ASME, Journal of Engineering for Industry, 113: 207–213.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Takeuchi, S., Saitou, K. (2008). Design for Product Embedded Disassembly. In: Yu, T., Davis, L., Baydar, C., Roy, R. (eds) Evolutionary Computation in Practice. Studies in Computational Intelligence, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75771-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75771-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75770-2

  • Online ISBN: 978-3-540-75771-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics