Skip to main content

Unsupervised Learning and Clustering

  • Chapter
Machine Learning Techniques for Multimedia

Part of the book series: Cognitive Technologies ((COGTECH))

Abstract

Unsupervised learning is very important in the processing of multimedia content as clustering or partitioning of data in the absence of class labels is often a requirement. This chapter begins with a review of the classic clustering techniques of k-means clustering and hierarchical clustering. Modern advances in clustering are covered with an analysis of kernel-based clustering and spectral clustering. One of the most popular unsupervised learning techniques for processing multimedia content is the self-organizing map, so a review of self-organizing maps and variants is presented in this chapter. The absence of class labels in unsupervised learning makes the question of evaluation and cluster quality assessment more complicated than in supervised learning. So this chapter also includes a comprehensive analysis of cluster validity assessment techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25(6):821–837, 1964.

    MathSciNet  Google Scholar 

  2. A. Ben-Hur, A. Elisseeff, and I. Guyon. A stability based method for discovering structure in clustered data. In Proceedings of the 7th Pacific Symposium on Biocomputing (PSB 2002), pp. 6–17, Lihue, HI, January 2002.

    Google Scholar 

  3. J. C. Bezdek and N. R. Pal. Cluster validation with generalized dunn’s indices. In ANNES ’95: Proceedings of the 2nd New Zealand Two-Stream International Conference on Artificial Neural Networks and Expert Systems, p. 190, Washington, DC, USA, 1995. IEEE Computer Society.

    Google Scholar 

  4. J. Blackmore and R. Miikkulainen. Incremental grid growing: encoding high-dimensional structure into a two-dimensional feature map. In Proceedings of the ICNN’93, International Conference on Neural Networks, Vol. I, pp. 450–455, Piscataway, NJ, 1993. IEEE Service Center.

    Google Scholar 

  5. N. Bolshakova and F. Azuaje. Cluster validation techniques for genome expression data. Technical Report TCD-CS-2002-33, Trinity College Dublin, September 2002.

    Google Scholar 

  6. M. Brand and K. Huang. A unifying theorem for spectral embedding and clustering. In Proceedings of the 9th International Workshop on AI and Statistics, January 2003.

    Google Scholar 

  7. T. Calinski and J. Harabasz. A dendrite method for cluster analysis. Communications in Statistics, 3:1–27, 1974.

    MathSciNet  Google Scholar 

  8. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines: and Other Kernel-Based Learning Methods. Cambridge University Press, New York, NY, USA, 2000.

    Google Scholar 

  9. D. L. Davies and W. Bouldin. A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1(2):224–227, 1979.

    Article  Google Scholar 

  10. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, 39:1–38, 1977.

    MATH  MathSciNet  Google Scholar 

  11. I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning. In Knowledge Discovery and Data Mining, pp. 269–274, 2001.

    Google Scholar 

  12. I. S. Dhillon, Y. Guan, and B. Kulis. Kernel k-means: spectral clustering and normalized cuts. In Proceedings of the 2004 ACM SIGKDD International conference on Knowledge Discovery and Data Mining, pp. 551–556. New York, NY, 2004. ACM Press.

    Google Scholar 

  13. C. Ding and X. He. Cluster merging and splitting in hierarchical clustering algorithms. In Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM’02), p. 139. Washington, DC, 2002. IEEE Computer Society.

    Google Scholar 

  14. W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of graphs. IBM Journal of Research and Development, 17:420–425, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  15. R. C. Dubes. How many clusters are best? – an experiment. Pattern Recognition, 20(6):645–663, 1987.

    Article  Google Scholar 

  16. J. C. Dunn. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3:32–57, 1974.

    Google Scholar 

  17. J. C. Dunn. Well separated clusters and optimal fuzzy-partitions. Journal of Cybernetics, 4:95–104, 1974.

    MathSciNet  Google Scholar 

  18. M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(98):298–305, 1973.

    MathSciNet  Google Scholar 

  19. B. Fischer and J. M. Buhmann. Path-based clustering for grouping of smooth curves and texture segmentation. Pattern Analysis and Machine Intelligence, IEEE Transactions, 25(4):513–518, April 2003.

    Google Scholar 

  20. E. W. Forgy. Cluster analysis of multivariate data: efficiency vs interpretability of classifications. Biometrics, 21:768–769, 1965.

    Google Scholar 

  21. E. B. Fowlkes and C. L. Mallow. A method for comparing two hierarchical clusterings. Journal of American Statistical Association, 78:553–569, 1983.

    Article  MATH  Google Scholar 

  22. B. Fritzke. Growing cell structures—a self-organizing network in k dimensions. In I. Aleksander and J. Taylor, editors, Artificial Neural Networks, 2, Vol. II, pp. 1051–1056, Amsterdam, Netherlands, 1992. North-Holland.

    Google Scholar 

  23. B. Fritzke. Growing grid – a self-organizing network with constant neighborhood range and adaptation strength. Neural Processing Letters, 2(5):9–13, 1995.

    Article  Google Scholar 

  24. J. Ghosh. Scalable clustering methods for data mining. In N. Ye, editor, Handbook of Data Mining, chapter 10. Mahwah, NJ, 2003. Lawrence Erlbaum.

    Google Scholar 

  25. C. D. Giurcaneanu and I. Tabus. Cluster structure inference based on clustering stability with applications to microarray data analysis. EURASIP Journal on Applied Signal Processing, 1:64–80, 2004.

    Article  Google Scholar 

  26. S. Guha, R. Rastogi, and K. Shim. CURE: an efficient clustering algorithm for large databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 73–84, 1998.

    Google Scholar 

  27. K. M. Hall. An r-dimensional quadratic placement algorithm. Management Science, 17(3):219–229, November 1970.

    MATH  Google Scholar 

  28. V. Hautamäki, S. Cherednichenko, I. Kärkkäinen, T. Kinnunen, and P. Fränti. Improving k-means by outlier removal. In Image Analysis, 14th Scandinavian Conference, SCIA 2005, pp. 978–987, 2005.

    Google Scholar 

  29. L. J. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2:193–218, 1985.

    Article  Google Scholar 

  30. L. J. Hubert and J. R. Levin. A general statistical framework for accessing categorical. Psychological Bulletin, 83:1072–1082, 1976.

    Article  Google Scholar 

  31. P. Jaccard. The distribution of flora in the alpine zone. New Phytologist, 11(2):37–50, 1912.

    Article  Google Scholar 

  32. S. Kaski, J. Kangas, and T. Kohonen. Bibliography of self-organizing map (SOM) papers 1981–1997. Neural Computing Surveys, 1(3&4):1–176, 1998.

    Google Scholar 

  33. B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal, 49(2):291–308, 1970.

    Google Scholar 

  34. Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein. Spectral biclustering of microarray data: coclustering genes and conditions. Genome Research, 13:703–716, April 2003.

    Article  Google Scholar 

  35. T. Kohonen. Self-Organizing Maps. Springer-Verlag, New York, NY, 2001.

    MATH  Google Scholar 

  36. T. Kohonen, E. Oja, O. Simula, A. Visa, and J. Kangas. Engineering applications of the self-organizing map. Proceedings of the IEEE, 84(10):1358–1384, October 1996.

    Google Scholar 

  37. T. Lange, V. Roth, M. L. Braun, and J. M. Buhmann. Stability-based validation of clustering solutions. Neural Computation, 16(6):1299–1323, 2004.

    Article  MATH  Google Scholar 

  38. B. Larsen and C. Aone. Fast and effective text mining using linear-time document clustering. In KDD ’99: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 16–22, New York, NY, USA, 1999. ACM Press.

    Google Scholar 

  39. M. Law and A. K. Jain. Cluster validity by bootstrapping partitions. Technical Report MSU-CSE-03-5, University of Washington, February 2003.

    Google Scholar 

  40. E. Levine and E. Domany. Resampling method for unsupervised estimation of cluster validity. Neural Computation, 13(11):2573–2593, 2001.

    Article  MATH  Google Scholar 

  41. M. Meila. Comparing clusterings. Technical Report 418, University of Washington, 2002.

    Google Scholar 

  42. D. Merkl. Exploration of text collections with hierarchical feature maps. In Research and Development in Information Retrieval, pp. 186–195, 1997.

    Google Scholar 

  43. R. Miikkulainen. Script recognition with hierarchical feature maps. Connection Science, 2(1&2):83–101, 1990.

    Google Scholar 

  44. G. W. Milligan and M. C. Cooper. An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50(2):159–179, 1985.

    Article  Google Scholar 

  45. A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: analysis and an algorithm. In Proceedings of the Advances in Neural Information Processing, 2001.

    Google Scholar 

  46. M. Oja, S. Kaski, and T. Kohonen. Bibliography of self-organizing map (SOM) papers: 1998–2001 addendum. Neural Computing Surveys, 3:1–156, 2003.

    Google Scholar 

  47. A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with eigenvectors of graphs. SIAM Journal of Mathematical Analysis and Applications, 11(3):430–452, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  48. W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(66):846–850, 1971.

    Article  Google Scholar 

  49. A. Rauber and D. Merkl. The SOMLib digital library system. In Proceedings of the 3rd European Conference on Research and Advanced Technology for Digital Libraries (ECDL’99), Lecture Notes in Computer Science (LNCS 1696), pp. 323–342, Paris, France, September 22-24 1999. Springer.

    Google Scholar 

  50. A. Rauber, D. Merkl, and M. Dittenbach. The growing hierarchical self-organizing map: Exploratory analysis of high-dimensional data. IEEE Transactions on Neural Networks, 13(6):1331–1341, November 2002.

    Article  Google Scholar 

  51. P. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20(1):53–65, 1987.

    Article  MATH  Google Scholar 

  52. J. W. Sammon Jr. A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, C-18(5):401–409, May 1969.

    Article  Google Scholar 

  53. B. Schölkopf, A. Smola, and K-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

    Article  Google Scholar 

  54. J. Shi and J. Malik. Normalized cuts and image segmentation. In Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR ’97), pp. 731–737. Huntsville, AL, 1997. IEEE Computer Society.

    Google Scholar 

  55. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 22(8):888–905, August 2000.

    Article  Google Scholar 

  56. M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering techniques. In Proceedings of KDD Workshop on Text Mining 2000, 2000.

    Google Scholar 

  57. A. Strehl and J. Ghosh. Cluster ensembles – a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3:583–617, December 2002.

    Article  MathSciNet  Google Scholar 

  58. R. Tibshirani, G. Walther, D. Botstein, and P. Brown. Cluster validation by prediction strength. Technical report, Statistics Department, Stanford University, 2001.

    Google Scholar 

  59. D. Verma and M. Meila. A comparison of spectral clustering algorithms. Technical report, University of Washington, 2003.

    Google Scholar 

  60. S. X. Yu and J. Shi. Multiclass spectral clustering. In Proceedings of the 9th IEEE International Conference on Computer Vision, p. 313, October 2003.

    Google Scholar 

  61. T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clustering method for very large databases. Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, pp. 103–114, 1996.

    Google Scholar 

  62. Y. Zhao and G. Karypis. Criterion functions for document clustering: experiments and analysis. Technical Report 01-040, University of Minnesota, November 2001.

    Google Scholar 

  63. Y. Zhao and G. Karypis. Evaluation of hierarchical clustering algorithms for document datasets. In Proceedings of the Eleventh International Conference on Information and Knowledge Management, pp. 515–524. New York, NY, 2002. ACM Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Greene, D., Cunningham, P., Mayer, R. (2008). Unsupervised Learning and Clustering. In: Cord, M., Cunningham, P. (eds) Machine Learning Techniques for Multimedia. Cognitive Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75171-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75171-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75170-0

  • Online ISBN: 978-3-540-75171-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics