Skip to main content

Core Proteins of the Secretory Machinery

  • Chapter
Pharmacology of Neurotransmitter Release

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 184))

Members of the Rab, SM- and SNARE-protein families play key roles in all intracellular membrane trafficking steps. While SM- and SNARE-proteins become directly involved in the fusion reaction at a late stage, Rabs and their effectors mediate upstream steps such as vesicle budding, delivery, tethering, and transport. Exocytosis of synaptic vesicles and regulated secretory granules are among the best-studied fusion events and involve the Rab3 isoforms Rab3A-D, the SM protein munc18-1, and the SNAREs syntaxin 1A, SNAP-25, and synaptobrevin 2. According to the current view, syntaxin 1A and SNAP-25 at the presynaptic membrane form a complex with synaptic vesicle-associated synaptobrevin 2. As complex formation proceeds, the opposed membranes are pulled tightly together, enforcing the fusion reaction. Munc18-1 is essential for regulated exocytosis and interacts with syntaxin 1A alone or with SNARE complexes, suggesting a role for munc18-1 in controlling the SNARE-assembly reaction. Compared to other intracellular fusion steps, special adaptations evolved in the synapse to allow for the tight regulation and high membrane turnover rates required for synaptic transmission. Synaptic vesicle fusion is triggered by the intracellular second messenger calcium, with members of the synaptotagmin protein family being prime candidates for linking calcium influx to fusion in the fast phase of exocytosis. To compensate for the massive incorporation of synaptic vesicles into the plasma membrane during exocytosis, special adaptations to endocytic mechanisms have evolved at the synapse to allow for efficient vesicle recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Artalejo CR, Elhamdani A, Palfrey HC (2002) Sustained stimulation shifts the mechanism of endocytosis from dynamin-1-dependent rapid endocytosis to clathrin- and dynamin-2-mediated slow endocytosis in chromaffin cells. Proc Natl Acad Sci USA 99:6358-63

    Article  PubMed  CAS  Google Scholar 

  • Becher A, Drenckhahn A, Pahner I, Margittai M, Jahn R, Ahnert-Hilger G (1999) The synaptophysin-synaptobrevin complex: a hallmark of synaptic vesicle maturation. J Neurosci 19:1922-31

    PubMed  CAS  Google Scholar 

  • Borisovska M, Zhao Y, Tsytsyura Y, Glyvuk N, Takamori S, Matti U, Rettig J, S üdhof T, Bruns D (2005) v-SNAREs control exocytosis of vesicles from priming to fusion. EMBO J. 24:2114-26

    Article  PubMed  CAS  Google Scholar 

  • Bracher A, Weissenhorn W (2002) Structural basis for the Golgi membrane recruitment of Sly1p by Sed5p. EMBO J 21:6114-24

    Article  PubMed  CAS  Google Scholar 

  • Breckenridge LJ, Almers W (1987) Final steps in exocytosis observed in a cell with giant secretory granules. Proc Natl Acad Sci USA 84:1945-49

    Article  PubMed  CAS  Google Scholar 

  • Brunger AT (2005) Structure and function of SNARE and SNARE-interacting proteins. Q Rev Biophys 38:1-47

    Article  PubMed  CAS  Google Scholar 

  • Ceccarelli B, Hurlbut WP, Mauro A (1973) Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J Cell Biol 57:499-524

    Article  PubMed  CAS  Google Scholar 

  • Ciufo LF, Barclay JW, Burgoyne RD, Morgan A (2005) Munc18-1 regulates early and late stages of exocytosis via syntaxin-independent protein interactions. Mol Biol Cell. 16:470-82

    Article  PubMed  CAS  Google Scholar 

  • Chapman ER (2002) Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat Rev Mol Cell Biol 3:498-508

    Article  PubMed  CAS  Google Scholar 

  • Cousin MA, Robinson PJ (2001) The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci 24:659-65

    Article  PubMed  CAS  Google Scholar 

  • Craxton M (2004) Synaptotagmin gene content of the sequenced genomes. BMC Genomics 5:43

    Article  PubMed  CAS  Google Scholar 

  • Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651-7

    Article  PubMed  CAS  Google Scholar 

  • Di Paolo G, Moskowitz HS, Gipson K, Wenk MR, Voronov S, Obayashi M, Flavell R, Fitzsimonds RM, Ryan TA, De Camilli P (2004) Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431:415-22

    Article  PubMed  CAS  Google Scholar 

  • Dulubova I, Khvotchev M, Liu S, Huryeva I, S üdhof TC, Rizo J (2007) Munc18-1 binds directly to the neuronal SNARE complex. Proc Natl Acad Sci USA. 2007 Feb 14; 104, 2697-702

    Google Scholar 

  • Edeling MA, Smith C, Owen D (2006) Life of a clathrin coat: insights from clathrin and AP structures. Nat Rev Mol Cell Biol 7:32-44

    Article  PubMed  CAS  Google Scholar 

  • Fasshauer D, Sutton RB, Brunger AT, Jahn R. (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci USA. 95:15781-6

    Article  PubMed  CAS  Google Scholar 

  • Fernandez JM, Neher E, Gomperts BD (1984) Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Nature 312:453-5

    Article  PubMed  CAS  Google Scholar 

  • Fesce R, Grohovaz F, Valtorta F, Meldolesi J (1994) Neurotransmitter release: fusion or ‘kiss-andrun’? Trends Cell Biol 4:1-4

    Article  PubMed  CAS  Google Scholar 

  • Gallwitz D, Jahn R. (2003) The riddle of the Sec1/Munc-18 proteins - new twists added to their interactions with SNAREs. Trends Biochem Sci 28:113-16

    Article  PubMed  CAS  Google Scholar 

  • Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 103:11821-7

    Article  PubMed  CAS  Google Scholar 

  • Hanson PI, Whiteheart SW (2005) AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol 6:519-29

    Article  PubMed  CAS  Google Scholar 

  • Hong W (2005) SNAREs and traffic. Biochim Biophys Acta 1744:493-517

    PubMed  Google Scholar 

  • Jahn R, Scheller RH. (2006) SNAREs-engines for membrane fusion. Nat Rev Mol Cell Biol 7:631-43

    Article  PubMed  CAS  Google Scholar 

  • Maldonado-Baez L, Wendland B (2006) Endocytic adaptors: recruiters, coordinators and regulators. Trends Cell Biol 16:505-13

    Article  PubMed  CAS  Google Scholar 

  • Marz KE, Hanson PI (2002) Sealed with a twist: complexin and the synaptic SNARE complex. Trends Neurosci 25:381-3

    Article  PubMed  CAS  Google Scholar 

  • McEwen JM, Madison JM, Dybbs M, Kaplan JM (2006) Antagonistic regulation of synaptic vesicle priming by Tomosyn and UNC-13. Neuron 51:303-15

    Article  PubMed  CAS  Google Scholar 

  • Misura KM, Scheller RH, Weis WI (2000) Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 404:355-62

    Article  PubMed  CAS  Google Scholar 

  • Peng R, Gallwitz D (2002) Sly1 protein bound to Golgi syntaxin Sed5p allows assembly and contributes to specificity of SNARE fusion complexes. J Cell Biol 157:645-55

    Article  PubMed  CAS  Google Scholar 

  • Pobbati AV, Stein A, Fasshauer D (2006) N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313:673-6

    Article  PubMed  CAS  Google Scholar 

  • Rizo J, Chen X, Arac D (2006) Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trends Cell Biol 16:339-50

    Article  PubMed  CAS  Google Scholar 

  • Rizo J, S üdhof TC (2002) Snares and Munc18 in synaptic vesicle fusion. Nat Rev Neurosci 3:641-53

    PubMed  CAS  Google Scholar 

  • Rizzoli SO, Betz WJ (2005) Synaptic vesicle pools. Nat Rev Neurosci 6:57-69

    Article  PubMed  CAS  Google Scholar 

  • Roos J, Kelly RB (1999) The endocytic machinery in nerve terminals surrounds sites of exocytosis. Curr Biol 9:1411-14

    Article  PubMed  CAS  Google Scholar 

  • Royle SJ, Lagnado L (2003) Endocytosis at the synaptic terminal. J Physiol 553:345-55

    Article  PubMed  CAS  Google Scholar 

  • Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717-66

    PubMed  CAS  Google Scholar 

  • Schl üter OM, Schmitz F, Jahn R, Rosenmund C, Sudhof TC (2004) A complete genetic analysis of neuronal Rab3 function. J Neurosci 24:6629-37

    Article  CAS  Google Scholar 

  • Schultz J, Doerks T, Ponting CP, Copley RR, Bork P (2000) More than 1,000 putative new human signalling proteins revealed by EST data mining. Nat Genet 25:201-04

    Article  PubMed  CAS  Google Scholar 

  • Sch ütz D, Zilly F, Lang T, Jahn R, Bruns D (2005) A dual function for Munc-18 in exocytosis of PC12 cells. Eur J Neurosci 21:2419-32

    Article  Google Scholar 

  • Shen J, Tareste DC, Paumet F, Rothman JE, Melia TJ (2007) Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128:183-95

    Article  PubMed  CAS  Google Scholar 

  • Sorensen JB, Wiederhold K, M üller EM, Milosevic I, Nagy G, de Groot BL, Grubm üller H, Fasshauer D (2006) Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles. EMBO J 25:955-66

    Article  PubMed  CAS  Google Scholar 

  • Sorensen JB, Nagy G, Varoqueaux F, Nehring RB, Brose N, Wilson MC, Neher E. (2003) Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Cell 114:75-86

    Article  PubMed  CAS  Google Scholar 

  • S üdhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509-47

    Article  CAS  Google Scholar 

  • S üdhof TC (2002) Synaptotagmins: why so many? J Biol Chem 277:7629-32

    Article  CAS  Google Scholar 

  • Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347-53

    Article  PubMed  CAS  Google Scholar 

  • Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubm üller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831-46

    Article  PubMed  CAS  Google Scholar 

  • Takei K, Haucke V (2001) Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol 11:385-91

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Maximov A, Shin OH, Dai H, Rizo J, S üdhof TC (2006) A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126:1175-87

    Article  PubMed  CAS  Google Scholar 

  • Toonen RF, Verhage M (2003) Vesicle trafficking: pleasure and pain from SM genes. Trends Cell Biol. 13:177-86

    Article  PubMed  CAS  Google Scholar 

  • Ungermann C, Langosch D (2005) Functions of SNAREs in intracellular membrane fusion and lipid bilayer mixing. J Cell Sci 118:3819-28

    Article  PubMed  CAS  Google Scholar 

  • Voets T, Toonen RF, Brian EC, de Wit H, Moser T, Rettig J, S üdhof TC, Neher E, Verhage M (2001) Munc18-1 promotes large dense-core vesicle docking. Neuron 31:581-91

    Article  PubMed  CAS  Google Scholar 

  • Washington NL, Ward S (2006) FER-1 regulates Ca2+ - mediated membrane fusion during C. elegans spermatogenesis. J Cell Sci 119:2552-62

    Article  PubMed  CAS  Google Scholar 

  • Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440:935-9

    Article  PubMed  CAS  Google Scholar 

  • Yoon TY, Okumus B, Zhang F, Shin YK, Ha T (2006) Multiple intermediates in SNARE-induced membrane fusion. Proc Natl Acad Sci USA 103:19731-6

    Article  PubMed  CAS  Google Scholar 

  • Zilly FE, Sorensen JB, Jahn R, Lang T (2006) Munc18-bound syntaxin readily forms SNARE complexes with synaptobrevin in native plasma membranes. PLoS Biol 4:e330

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lang, T., Jahn, R. (2008). Core Proteins of the Secretory Machinery. In: Südhof, T.C., Starke, K. (eds) Pharmacology of Neurotransmitter Release. Handbook of Experimental Pharmacology, vol 184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74805-2_5

Download citation

Publish with us

Policies and ethics