Skip to main content

Ground Penetrating Radar

  • Chapter
Environmental Geology

Abstract

Ground penetrating radar2 (GPR) is an electromagnetic pulse reflection method based on physical principles similar to those of reflection seismics. It is a geophysical technique for shallow investigations with high resolution which has undergone a rapid development during the last two decades (cf. e.g. GPR Conference Proceedings 1994 to 2006). There are several synonyms and acronyms for this method like EMR (electromagnetic reflection), SIR (subsurface interface radar), georadar, subsurface penetrating radar and soil radar. GPR has been used since the 1960s with the term radio echo sounding (RES) for ice thickness measurements on polar ice sheets. The method was first applied by Stern (1929), 1930 in Austria to estimate the thickness of a glacier. GPR has been increasingly accepted for geological, engineering, environmental, and archaeological investigations since the 1980s.

Bernhard Illich: Localization of objects, Delineation of a mineralized fault in consolidated rocks, Investigations of concrete constructions, Examination of masonry structures, and Investigation of residual foundations; Hellfried Petzold: Investigation of a domestic waste site in a refilled open-pit mine; Thomas Richter: Radar tomography to assess the ground below buildings; Dieter Eisenburger: Special Applications and New Developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and further reading

  • Ahrens, T. J. (Ed.) (1995): A handbook of physical constants. Am. Geophys. Union, Washington, 3 vols.

    Google Scholar 

  • Annan, A. P., Waller, W. M., Strangway, D. W., Rossiter, J. R., Redman, J. D. & Watts, R. D. (1975): The electromagnetic response of a low loss, 2-layer, dielectric earth for horizontal electric dipole excitation. Geophysics, 40, 285–298.

    Article  Google Scholar 

  • Balanis, C. A. (1996): Antenna theory: analysis and design. Wiley.

    Google Scholar 

  • Baños, A. (1966): Dipole radiation in the presence of a conducting halfspace. Pergamon Press, New York.

    Google Scholar 

  • Beblo, M. (1982): Elektrische Eigenschaften. In: Angenheister, G. (Ed.): LANDOLT-Börnstein: Zahlenwerte und Funktionen aus Naturwissenschaften und Technik. Neue Serie V, 1b, 254–261, Springer, Berlin.

    Google Scholar 

  • bleil, u.& petersen, n. (1982): magnetic properties: in landolt-bornstein numerical data and functional relationships in science and technology: group v, geophysics and space research, lb, physical properties of rocks. angenheister, g. (ed.), springer, berlin, 308–432.

    Google Scholar 

  • Blindow, N. (1986): Bestimmung der Mächtigkeit und des inneren Aufbaus von Schelfeis und temperierten Gletschern mit einem hochauflösenden elektromagnetischen Reflexionsverfahren. Dissertation, Institut für Geophysik, Westfälische Wilhelms-Universität Münster.

    Google Scholar 

  • Blindow, N., Ergenzinger, P., Pahls, H., Scholz, H. & Thyssen, F. (1987): Continuous profiling of subsurface structures and groundwater surface by EMR methods in Southern Egypt. Berliner Geowiss. Abh. (A) 75.2, 575–627.

    Google Scholar 

  • Bohidar, R. N. & Hermance, J. F. (2002): The GPR refraction method. Geophysics, 67, 1474–1485.

    Article  Google Scholar 

  • Brekovskikh, L. M. (1980): Waves in layered media, 2nd edn. Academic Press, New York.

    Google Scholar 

  • Brewster, M. L., Annan A. P. & Redman, J. D. (1992): GPR Monitoring of DNAPL migration in a sandy aquifer. In: Fourth international conference on ground penetrating radar. Geological Survey of Finland, Special Paper 16, 185–190.

    Google Scholar 

  • Brewster, M. L.&Annan, A. P. (1994): Ground-penetrating radar monitoring of a controlled DNAPL release: 200 MHz radar. Geophysics, 59, 1211–1221.

    Article  Google Scholar 

  • Brewster, M. L., Annan, A. P., Greenhouse, J. P., Kueper, B. H., Olhoeft, G. R., Redman, J. D. & Sander, K. A. (1995): Observed migration of a controlled DNAPL release by geophysical methods: Ground Water. 33, 977–987.

    Google Scholar 

  • Bristow, C S. & Jol, H. M. (2003): Ground penetrating radar in sediments. Geological Society Publication 211, London.

    Google Scholar 

  • Cai, J. & Mcmechan, G. A. (1995): Ray-based synthesis of bistatic ground-penetrating radar profiles. Geophysics, 60, 87–96.

    Article  Google Scholar 

  • Carcione, J. M. & Seriani, G. (2000): An electromagnetic modelling tool for the detection of hydrocarbons in the subsoil. Geophys. Prosp., 48, 231–256.

    Article  Google Scholar 

  • Carmichael, R. S. (Ed.) (1982): Handbook of physical properties of rocks. CC Press, Boca Raton, 3 vols.

    Google Scholar 

  • Clough, J. W. (1976): Electromagnetic lateral waves observed by earth sounding radars. Geophysics, 41, 1126–1128.

    Google Scholar 

  • Conyers, L. B. & Goodman, D. (1997): Ground-penetrating radar: an introduction for archaeologists. Altimira.

    Google Scholar 

  • Daniels, D. J., Gunton, D. J. & Scott, H. F. (1988): Introduction to subsurface radar. IEE Proceedings F, 135(F,4), 278–320.

    Google Scholar 

  • Daniels, J. J. (1989): Fundamentals of ground penetrating radar. Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, SAGEEP 89, Golden, Colorado, 62–142.

    Google Scholar 

  • Daniels, J. J. (1996): Surface Penetrating Radar. The Institution of Electrical Engineers, London.

    Google Scholar 

  • Daniels, J. J. (2004): Ground Penetrating Radar — 2nd edn. The Institution of Electrical Engineers, London.

    Google Scholar 

  • Daniels, J. J. (1989): Fundamentals of ground penetrating radar. Proceedings of the Symposium on the Application of Geophysics to Engineering an Environmental Problems, SAGEEP 89, Golden, Colorado, 62–142.

    Google Scholar 

  • Davis, J. L. & Annan, A. P. (1989): Ground penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophys. Prosp., 37, 531–551.

    Article  Google Scholar 

  • Doolittle, J. A. (1982): Characterizing soil map units with the ground-penetrating radar. Soil Surv. Horizons, 23,4, 3–10.

    Google Scholar 

  • Doolittle, J. A. (1983): Investigating Histosols with the ground-penetrating radar. Soil Surv. Horizons, 24,3, 23–28.

    Google Scholar 

  • Douglas, D. G., Burns, A. A., Rino, Ch. L. & Maresca, J. W. (1992): A study to determine the feasibility of using a ground-penetrating radar for more effective remediation of subsurface contamination. Risk Reduction Engineering Laboratory Office of Research and Development U. S. Environmental Protection Agency, Cincinnati, Ohio, Report EPA/600/R-92/089.

    Google Scholar 

  • Eisenburger, D., Sender, F. & Thierbach, R. (1993): Borehole Radar-An Efficient Geophysical Tool to Aid in the Planing of Salt caverns and Mines. Seventh Symposium on Salt, I, 279–284, Elsevier, Amsterdam.

    Google Scholar 

  • Forkmann, B. & Petzold, H. (1989): Prinzip und Anwendung des Gesteinsradars zur Erkundung des Nahbereichs. Freiberger Forschungshefte, C 432, Dt. Verlag für Grundstoffindustrie, Leipzig.

    Google Scholar 

  • Forkmann, B. & Petzold, H. (1991): Gesteinsradar — Prinzip und Anwendungsmöglichkeiten. Z. angew. Geol., 37, 25–30.

    Google Scholar 

  • Gevantman, L. H. (Ed.) (1981): Physical properties data for rock salt. National Bureau of Standards Monograph 167.

    Google Scholar 

  • Goodman, D. (1994): Ground-penetrating radar simulation in engineering and archaeology. Geophysics, 59, 224–232.

    Article  Google Scholar 

  • GPR 1994, Proceedings of the Fifth International Conference on Ground Penetrating Radar; 12–16 June, 1994, Kitchener, Ontario Canada.

    Google Scholar 

  • GPR 1996, Proceedings of the Sixth International Conference on Ground Penetrating Radar; September 30–October 3, 1996, Tohoku Japan.

    Google Scholar 

  • GPR 1998, Proceedings of the Seventh International Conference on Ground Penetrating Radar; 27–30 May, 1998, Lawrence, Kansas USA.

    Google Scholar 

  • GPR 2000, Proceedings of the Eighth International Conference on Ground Penetrating Radar; 23–26 May, 2000, Gold Coast, Australia.

    Google Scholar 

  • GPR 2002, Proceedings of the Ninth International Conference on Ground Penetrating Radar; April 29–May 2, 2002, Santa Barbara, California, USA.

    Google Scholar 

  • GPR 2004, Proceedings of the Tenth International Conference on Ground Penetrating Radar; 21–24 June, 2004, Delft, The Netherlands.

    Google Scholar 

  • GPR 2006, Proceedings of the Eleventh International Conference on Ground Penetrating Radar; June 19–22, 2006, Columbus, Ohio, USA.

    Google Scholar 

  • Greenhouse, J., Brewster, M., Schneider, G., Redmann, D., Annan, P., Olhoeft, G., Lucius, J., Sander, K. & Mazella, A. (1993): Geophysics and solvents: the Borden experiment. The Leading Edge, 261–267.

    Google Scholar 

  • Halleux, L., Feller, P., Monjoie, A. & Pissart, R. (1992): Ground penetrating and borehole radar surveys in the Borth salt mine (FRG). In: Fourth International Conference on Ground Penetrating Radar. Geological Survey of Finland, Special Paper 16, 317–321.

    Google Scholar 

  • Halleux, L. & Richter, T. (1994): Radar tomography for shallow engineering geological investigations. Poster presentation on the Fifth International Conference on Ground Penetrating Radar; June 12–16, 1994, Kitchener, Ontario, Canada.

    Google Scholar 

  • Hansen, V. W. (1989): Numerical solution of antennas in layered media. Wiley.

    Google Scholar 

  • v. Hippel, A. R. (1954): Dielectrics and waves. M. I. T. Press, Cambridge, Massachusetts.

    Google Scholar 

  • Huggenberger, P., Meier, E. & Pugin, A. (1994): Ground-probing radar as a tool for heterogeneity estimation in gravel deposits: Advances in data processing and facies analysis. Applied Geophysics, 31, 171–184.

    Article  Google Scholar 

  • Iizuka, K., Freundorfer, A. P., Wu, K. H., Mori, H., Ogura, H. & Nguyen, V.-K. (1984): Step-frequency radar. J. Appl. Phys., 56,9, 2572–2583.

    Article  Google Scholar 

  • Janschek, H., Mauritsch, H., Räsler, R. & Steinhauser, P. (1985): Hochfrequenzmethoden. In: Militzer, H. & Weber, F. (Eds.): Angewandte Geophysik, 2, Geoelektrik-Geothermik-Radiometrie-Aerogeophysik. Springer Wien, Akademie Berlin, 151–173.

    Google Scholar 

  • Johari, G. P. & Charette, P. A. (1975): The permittivity and attenuation in polycrystalline and single-crystal ice Ih at 35 and 60 MHz. J. Glac, 14, 293–303.

    Google Scholar 

  • Jones, F. H. M., Narod, B. B. & Clarke, G. K. C. (1989): Design and operation of a portable impulse radar. J. Glac, 35, 143–147.

    Google Scholar 

  • King, R. W. P. (1980): Antennas in matter: fundamentals, theory, and applications: M.I.T. Press, Cambridge, Massachusetts.

    Google Scholar 

  • Kraus, J. D. & Marhefka, R. J. (1988): Antennas, 2nd edn.: McGraw-Hill, New York.

    Google Scholar 

  • Kraus, J. D. (1991): Electromagnetics, 4th edn.: McGraw-Hill, New York.

    Google Scholar 

  • Lambot, S. & Goritti, A. (Eds.) (2007): Special Issue on Ground Penetrating Radar. Near Surface Geophysics, 5,1, 5–82.

    Google Scholar 

  • Lampe, B., Holliger, K. & Green, A. G. (2003): A finite difference time-domain simulation tool for ground-penetrating radar antennas. Geophysics, 68, 971–987.

    Article  Google Scholar 

  • Leparoux, D., Gibert, D. & Cote, P. (2001): Adaptation of prestack migration to multioffset ground penetrating radar (GPR) data. Geophys. Prosp., 49, 374–386.

    Article  Google Scholar 

  • Lucius, J. E., Olhoeft, G. R., Hill, P. L. & Duke, S. K. (1992): Properties and hazards of 108 selected substances-1992 edn: U.S. Geological Survey Open-File Report 92–527.

    Google Scholar 

  • Mcmechan, G. A., Loucks, R. G., Mescher, P. & Zeng, X. (2002): Characterization of a coalesced, collapsed paleocave reservoir analog using GPR and well-core data. Geophysics, 67, 1148–1158.

    Article  Google Scholar 

  • Mehlhorn, H., Richter, TH. & Band, S. (1988): Beitrag zu theoretischen Aspekten der Anwendung des Radarverfahrens zur Ortung von punktoder flächenartigen Zielen. Neue Bergbautechnik, 18, 176–178.

    Google Scholar 

  • Meyers, R. A., Smith, D. G., Jol, H. M. & Peterson, C. D. (1996): Evidence for eight great earthquake-subsidence events detected with ground-penetrating radar. Willapa Barrier, Washington. Geology, 24, 99–102.

    Google Scholar 

  • Militzer, H. & Weber, F. (1987): Angewandte Geophysik, 3, Seismik. Springer, Berlin, Akademie Berlin.

    Google Scholar 

  • Miller, E. K. (Ed.) (1986): Time-domain measurements in electromagnetics. Van No strand, New York.

    Google Scholar 

  • Morey, R. M. (1998): Ground penetrating radar for evaluating subsurface conditions for transportation facilities. NAS/NRC/TRB NCHRP Synthesis Report 255.

    Google Scholar 

  • Mundry, E. (1991): Numerische Modelluntersuchungen zur Reflexion hochfrequenter elektromagnetischer Wellen im Salzgestein. Geol. Jb., E 48, Hannover, 259–282.

    Google Scholar 

  • Noon, D. A., Longstaff, D. & Yelf, R. J. (1994): Advances in the development of step frequency ground penetrating radar. Proceedings of the Fifth International Conference on Ground Penetrating Radar. Kitchener, Ontario, June 12–16, 117–131.

    Google Scholar 

  • Olhoeft, G. R. (1988): Interpretation of hole-to-hole radar measurements. In: Proceedings of the Third Technical Symposium on Tunnel Detection, January 12–15, 1988, Golden, CO, 616–629.

    Google Scholar 

  • Olhoeft, G. R. (1992): Geophysical detection of hydrocarbon and organic chemical contamination. In: Bell, R. S., (Ed.): Proceedings on Application of Geophysics to Engineering, and Environmental Problems, Oakbrook, IL: Society of Engineering and Mining Exploration Geophysics, Golden, CO, 587–595.

    Chapter  Google Scholar 

  • Olhoeft, G. R. & Capron, D. E. (1994): Petrophysical causes of electromagnetic dispersion. Proceedings of the Fifth International Conference on Ground Penetrating Radar. Kitchener, Ontario, June 12–16, 145–152.

    Google Scholar 

  • Olhoeft, G. R., Powers, M. H. & Capron, D. E. (1994): Buried object detection with ground penetrating radar. In: Proc. of Unexploded Ordnance (UXO) detection and range remediation conference, Golden, CO, May 17–19, 1994, 207–233.

    Google Scholar 

  • Olhoeft, G. R. (1998): Electrical, magnetic and geometric properties that determine ground penetrating radar performance. In: Proc. of GPR’98, 7th Int’l. Conf. On Ground Penetrating Radar, May 27–30, 1998, The Univ. of Kansas, Lawrence, KS, USA, 177–182.

    Google Scholar 

  • Olhoeft, G. R. (2000): Maximizing the information return from ground penetrating radar. J. Applied Geophys., 43, 175–187.

    Article  Google Scholar 

  • Olhoeft, G. R. (2004): www.g-p-r.com. Webpage on Ground Penetrating Radar with a GPR Tutorial, a Bibliography and links to GPR Manufactures.

    Google Scholar 

  • Pfeiffer, W. (1976): Impulstechnik. Hanser, München.

    Google Scholar 

  • Pipan, M., Forte, E., Guangyou, F. & Finetti, I. (2003): High resolution imaging and joint characterization in limestone. Near Surface Geophysics, 1, 39–55.

    Google Scholar 

  • Radezevicius S. J., Chen C. C., Peters L. & Daniels J. J. (2003): Near-field dipole radiation dynamics through FDTD modelling. Journal of Applied Geophysics, 52, 75–91.

    Article  Google Scholar 

  • Reynolds, J. M. (1997): An Introduction to Applied and Environmental Geophysics. John Wiley & Sons Ltd., Chichester.

    Google Scholar 

  • Roth, F., Van Genderen, P. & Verhaegen, M. (2004): Radar Scattering Models for the Identification of Buried Low-Metal Content Landmines. Proceedings of the Tenth International Conference on Ground Penetrating Radar; 21–24 June, 2004, Delft, The Netherlands.

    Google Scholar 

  • Rothammel, K. (1991): Antennenbuch. 10th edn., Franck-Kosmos, Stuttgart.

    Google Scholar 

  • Skolnik, M. I. (1970): Introduction to radar systems. McGraw-Hill, New York.

    Google Scholar 

  • Slob, E. & Yarovoy, A. (Eds.) (2006): Special Issue on Ground Penetrating Radar. Near Surface Geophysics, 4,1, 5–75.

    Google Scholar 

  • Stern, W., (1929): Versuch einer elektrodynamischen Dickenmessung von Gletschereis. Gerl. Beitr. zur Geophysik, 23, 292–333.

    Google Scholar 

  • Stern, W., (1930): Über Grundlagen, Methodik und bisherige Ergebnisse elektrodynamischer Dickenmessung von Gletschereis. Z. Gletscherkunde, 15, 24–42.

    Google Scholar 

  • Szerbiak, R. B., Mcmechan, G. A., Corbeanu, R., Forster, C. & Snelgrove, S. H. (2001): 3-D characterization of a clastic reservoir analog: From 3-D GPR data to a 3-D fluid permeability model. Geophysics, 66, 1026–1037.

    Article  Google Scholar 

  • Taylor, B. N. (1995): Guide for the use of the international system of units (SI). NIST Spec. Publ. 811, 1995 ed., USGPO, Washington, DC. (http://www.nist.gov).

    Google Scholar 

  • Thierbach, R. (1974): Electromagnetic reflections in salt deposits. J. Geophys., 40, 633–637.

    Google Scholar 

  • Thyssen, F. (1985): Erkundung oberflächennaher Strukturen und Eigenschaften mit dem elektromagnetischen Reflexionsverfahren. In: Heitfeld, K.-H. (Ed.): Ingenieurgeologische Probleme im Grenzbereich zwischen Locker-und Festgesteinen. Springer, Berlin, 597–609.

    Google Scholar 

  • Tronicke, J., Dietrich, P., Wahlig, U. & Appel, E. (2002): Integrating surface georadar and crosshole radar tomography: A validation experiment in braided stream deposits. Geophysics, 78, 1516–1523.

    Article  Google Scholar 

  • Turner, G. & Siggins, A. F. (1994): Constant Q-attenuation of subsurface radar pulses. Geophysics, 59, 1192–1200.

    Article  Google Scholar 

  • Tsang, T., Kong, J. A. & Simmons, G. (1973): Interference patterns of a horizontal electric dipole over layered dielectric media. J. Geophys. Res., 78, 3287–3300.

    Article  Google Scholar 

  • Tillard, S. (1994): Radar experiments in isotropic and anisotropic geological formations (granite and schists). Geophys. Prosp., 42, 615–636.

    Article  Google Scholar 

  • Van Overmeeren, R. A. (1994): Georadar for hydrogeology. First Break, 12, 401–408.

    Google Scholar 

  • Wright, D. L., Hodge, S. M., Bradley, J. A., Grover, T. P. & Jacobel, R. W. (1990): A digital low-frequency, surface-profiling ice-radar system. J. Glac, 36, 1112–1121.

    Google Scholar 

  • Wu, T. T. & King, R. W. P. (1965): The cylindrical antenna with nonreflecting resistive loading, IEEE Trans. Antennas and Propagation AP-13, 369–373.

    Article  Google Scholar 

  • Wyatt, D. E. & Temples, T. J. (1996): Ground-penetrating radar detection of small-scale channels, joints and faults in the unconsolitated sediments of the atlantic coastal plain. Environmental Geology, 27, 219–225.

    Article  Google Scholar 

  • Zeng, X. & Mcmechan, G. A. (1997): GPR characterization of buried tanks and pipes. Geophysics, 62, 797–806.

    Article  Google Scholar 

  • Zeng, X., Mcmechan, G. A. & Xu, T. (2000): Synthesis of amplitude-versus-offset variations in ground-penetrating radar data. Geophysics, 65, 113–125.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blindow, N., Eisenburger, D., Illich, B., Petzold, H., Richter, T. (2007). Ground Penetrating Radar. In: Environmental Geology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74671-3_10

Download citation

Publish with us

Policies and ethics