Skip to main content

Inferring Models of Rearrangements, Recombinations, and Horizontal Transfers by the Minimum Evolution Criterion

(Extended Abstract)

  • Conference paper
Algorithms in Bioinformatics (WABI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4645))

Included in the following conference series:

  • 1062 Accesses

Abstract

The evolution of viruses is very rapid and in addition to local point mutations (insertion, deletion, substitution) it also includes frequent recombinations, genome rearrangements, and horizontal transfer of genetic material. Evolutionary analysis of viral sequences is therefore a complicated matter for two main reasons: First, due to HGTs and recombinations, the right model of evolution is a network and not a tree. Second, due to genome rearrangements, an alignment of the input sequences is not guaranteed. Since contemporary methods for inferring phylogenetic networks require aligned sequences as input, they cannot deal with viral evolution. In this work we present the first computational approach which deals with both genome rearrangements and horizontal gene transfers and does not require a multiple alignment as input. We formalize a new set of computational problems which involve analyzing such complex models of evolution, investigate their computational complexity, and devise algorithms for solving them. Moreover, we demonstrate the viability of our methods on several synthetic datasets as well as biological datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addario-Berry, L., Hallett, M., Lagergren, J.: Towards identifying lateral gene transfer events. In: PSB 2003, pp. 279–290 (2003)

    Google Scholar 

  2. Arvestad, L., Berglund, A., Lagergren, J., Sennblad, B.: Beep software package (2006)

    Google Scholar 

  3. Bergthorsson, U., Adams, K., Thomason, B., Palmer, J.: Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424, 197–201 (2003)

    Article  Google Scholar 

  4. Boc, A., Makarenkov, V.: New efficient algorithm for detection of horizontal gene transfer events. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 190–201. Springer, Heidelberg (2003)

    Google Scholar 

  5. Burkhardt, S., Kärkkäinen, J.: Fast lightweight suffix array construction and checking. In: Baeza-Yates, R.A., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 55–69. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Delwiche, C., Palmer, J.: Rampant horizontal transfer and duplicaion of rubisco genes in eubacteria and plastids. Mol. Biol. Evol 13(6) (1996)

    Google Scholar 

  7. Desper, R., Gascuel, O.: Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. J. Comp. Biol. 9(5), 687–705 (2002)

    Article  Google Scholar 

  8. Doolittle, W.F., Boucher, Y., Nesbo, C.L., Douady, C.J., Andersson, J.O., Roger, A.J.: How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Phil. Trans. R. Soc. Lond. B. Biol. Sci. 358, 39–57 (2003)

    Article  Google Scholar 

  9. Elias, I.: Settling the intractability of multiple alignment. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 352–363. Springer, Heidelberg (2003)

    Google Scholar 

  10. Gascuel, O.: Concerning the NJ algorithm and its unweighted version UNJ (1997)

    Google Scholar 

  11. Goldstein, A., Kolman, P., Zheng, J.: Minimum common string partition problem: Hardness and approximations. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 484–495. Springer, Heidelberg (2004)

    Google Scholar 

  12. Hein, J.: A heuristic method to reconstruct the history of sequences subject to recombination. J. Mol. Evol. 36, 396–405 (1993)

    Article  Google Scholar 

  13. Huson, D.H., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol 23(2), 254–267 (2006)

    Article  Google Scholar 

  14. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Maximum likelihood of phylogenetic networks. Bioinformatics 22(21), 2604–2611 (2006)

    Article  Google Scholar 

  15. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Efficient parsimony-based methods for phylogenetic network reconstruction. Bioinformatics 23(2), 123–128 (2007)

    Article  Google Scholar 

  16. Judd, W.S., Olmstead, R.G.: A survey of tricolpate (eudicot) phylogenetic relationships. American Journal of Botany 91, 1627–1644 (2004)

    Article  Google Scholar 

  17. Kalinina, O., Norder, H., Magnius, L.O.: Full-length open reading frame of a recombinant hepatitis c virus strain from St Petersburg: proposed mechanism for its formation. J. Gen. Virol. 85, 1853–1857 (2004)

    Article  Google Scholar 

  18. Kidd, K.K., Sgaramella-Zonta, L.A.: Phylogenetic analysis: concepts and methods. Am. J. Hum. Genet. 23(3), 235–252 (1971)

    Google Scholar 

  19. Kuiken, C., Yusim, K., Boykin, L., Richardson, R.: The los alamos hcv sequence database. Bioinformatics 21(3), 379–384 (2005)

    Article  Google Scholar 

  20. Michelangeli, F.A., Davis, J.I., Stevenson, D.W.: Phylogenetic relationships among Poaceae and related families as inferred from morphology, inversions in the plastid genome, and sequence data from mitochondrial and plastid genomes. American Journal of Botany 90, 93–106 (2003)

    Article  Google Scholar 

  21. Rzhetsky, A., Nei, M.: Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol. Biol. Evol. 10, 1073–1095 (1993)

    Google Scholar 

  22. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4), 406–425 (1987)

    Google Scholar 

  23. Sinkovics, J., Horvath, J., Horak, A.: The origin and evolution of viruses (a review). Acta Microbiol Immunol Hung. 45(3-4), 349–390 (1998)

    Google Scholar 

  24. Stoye, J., Evers, D., Meyer, F.: Rose: generating sequence families. Bioinformatics 14, 157–163 (1998)

    Article  Google Scholar 

  25. Strimmer, K., Moulton, V.: Likelihood analysis of phylogenetic networks using directed graphical models. Mol. Biol. Evol. 17(6), 875–881 (2000)

    Google Scholar 

  26. Ulitsky, I., Burstein, D., Tuller, T., Chor, B.: The average common substring approach to phylogenomic reconstruction. J. Comp. Biol. 13(2), 336–350 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Raffaele Giancarlo Sridhar Hannenhalli

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Birin, H., Gal-Or, Z., Elias, I., Tuller, T. (2007). Inferring Models of Rearrangements, Recombinations, and Horizontal Transfers by the Minimum Evolution Criterion . In: Giancarlo, R., Hannenhalli, S. (eds) Algorithms in Bioinformatics. WABI 2007. Lecture Notes in Computer Science(), vol 4645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74126-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74126-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74125-1

  • Online ISBN: 978-3-540-74126-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics