Skip to main content

Approximation by DNF: Examples and Counterexamples

  • Conference paper
Automata, Languages and Programming (ICALP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4596))

Included in the following conference series:

Abstract

Say that f:{0,1}n →{0,1} ε-approximates g : {0,1}n →{0,1} if the functions disagree on at most an ε fraction of points. This paper contains two results about approximation by DNF and other small-depth circuits:

(1) For every constant 0 < ε< 1/2 there is a DNF of size \(2^{O(\sqrt{n})}\) that ε-approximates the Majority function on n bits, and this is optimal up to the constant in the exponent.

(2) There is a monotone function \(\mathcal{F} : \{{0,1}\}^{n} \rightarrow \{{0,1}\}\) with total influence (AKA average sensitivity) \({\mathbb{I}}({\mathcal{F}}) \leq O(\log n)\) such that any DNF or CNF that .01-approximates \({\mathcal{F}}\) requires size 2Ω(n / logn) and such that any unbounded fan-in AND-OR-NOT circuit that .01-approximates \({\mathcal{F}}\) requires size Ω(n/ logn). This disproves a conjecture of Benjamini, Kalai, and Schramm (appearing in [BKS99,Kal00,KS05]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajtai, M.: \(\Sigma^1_1\)-formulae on finite structures. Annals of Pure and Applied Logic 24, 1–48 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  • Ajtai, M.: Approximate counting with uniform constant-depth circuits. In: Advances in Computational Complexity Theory, pp. 1–20. Amer. Math. Soc., Providence, RI (1993)

    Google Scholar 

  • Ajtai, M., Komlós, J., Szemerédi, E.: Sorting in c logn parallel steps. Combinatorica 3, 1–19 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  • Benjamini, I., Kalai, G., Schramm, O.: Noise sensitivity of boolean functions and applications to percolation. Inst. Hautes Études Sci. Publ. Math. 90, 5–43 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Ben-Or, M., Linial, N.: Collective coin flipping. In: Micali, S. (ed.) Randomness and Computation, Academic Press, New York (1990)

    Google Scholar 

  • Boppana, R.: Threshold functions and bounded depth monotone circuits. J. Comp. Sys. Sci. 32(2), 222–229 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Boppana, R.: The average sensitivity of bounded-depth circuits. Inf. Process. Lett. 63(5), 257–261 (1997)

    Article  MathSciNet  Google Scholar 

  • Bshouty, N., Tamon, C.: On the Fourier spectrum of monotone functions. Journal of the ACM 43(4), 747–770 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Dinur, I., Friedgut, E.: Lecture notes (2006), available at http://www.cs.huji.ac.il/~analyt/scribes/L11.pdf

  • Friedgut, E.: Boolean functions with low average sensitivity depend on few coordinates. Combinatorica 18(1), 474–483 (1998)

    Article  MathSciNet  Google Scholar 

  • Friedgut, E.: Sharp thresholds of graph properties, and the k-SAT problem. J. American Math. Soc. 12(4), 1017–1054 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Friedgut, E.: Hunting for sharp thresholds. Random Struct. & Algorithms 26(1-2), 37–51 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Håstad, J.: Computational Limitations for Small Depth Circuits. MIT Press, Cambridge, MA (1986)

    Google Scholar 

  • Hoory, S., Magen, A., Pitassi, T.: Monotone circuits for the majority function. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Jackson, J.: The Harmonic sieve: a novel application of Fourier analysis to machine learning theory and practice. PhD thesis, Carnegie Mellon University, (August 1995)

    Google Scholar 

  • Kalai, G.: Combinatorics with a geometric flavor: some examples, 2000. GAFA Special Volume 10, Birkhauser Verlag, Basel (2000)

    Google Scholar 

  • Kahn, J., Kalai, G., Linial, N.: The influence of variables on boolean functions. In: Proceedings of the 29th Annual Symposium on Foundations of Computer Science, pp. 68–80 (1988)

    Google Scholar 

  • Kalai, G., Safra, S.: Threshold phenomena and influence. In: Computational Complexity and Statistical Physics, Oxford University Press, Oxford (2005)

    Google Scholar 

  • Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, Fourier transform and learnability. Journal of the ACM 40(3), 607–620 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Margulis, G.: Probabilistic characteristics of graphs with large connectivity. Prob. Peredachi Inform. 10, 101–108 (1974)

    MATH  MathSciNet  Google Scholar 

  • O’Donnell, R., Servedio, R.: Learning monotone decision trees in polynomial time. SIAM J. Comp., 2006 (to appear)

    Google Scholar 

  • Paterson, M., Pippenger, N., Zwick, U.: Optimal carry save networks. Boolean function complexity 169, 174–201 (1992)

    MathSciNet  Google Scholar 

  • Russo, L.: On the critical percolation probabilities. Z. Wahrsch. Werw. Gebiete 43, 39–48 (1978)

    Article  MATH  Google Scholar 

  • Talagrand, M.: How much are increasing sets positively correlated? Combinatorica 16(2), 243–258 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Valiant, L.: Short monotone formulae for the majority function. J. Algorithms 5(3), 363–366 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  • Viola, E.: On probabilistic time versus alternating time. In: ECCC 2005, 173 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lars Arge Christian Cachin Tomasz Jurdziński Andrzej Tarlecki

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

O’Donnell, R., Wimmer, K. (2007). Approximation by DNF: Examples and Counterexamples. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds) Automata, Languages and Programming. ICALP 2007. Lecture Notes in Computer Science, vol 4596. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73420-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73420-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73419-2

  • Online ISBN: 978-3-540-73420-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics