Skip to main content

Performance of Algorithms for Periodic Timetable Optimization

  • Conference paper
Computer-aided Systems in Public Transport

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 600))

Abstract

During the last 15 years, many solution methods for the important task of constructing periodic timetables for public transportation companies have been proposed. We first point out the importance of an objective function, where we observe that in particular a linear objective function turns out to be a good compromise between essential practical requirements and computational tractability. Then, we enter into a detailed empirical analysis of various Mixed Integer Programming (MIP) procedures — those using node variables and those using arc variables — genetic algorithms, simulated annealing and constraint programming. To our knowledge, this is the first comparison of five conceptually different solution approaches for periodic timetable optimization.

On rather small instances, an arc-based MIP formulation behaves best, when refined by additional valid inequalities. On bigger instances, the solutions obtained by a genetic algorithm are competitive to the solutions CPLEX was investigating until it reached a time or memory limit. For Deutsche Bahn AG, the genetic algorithm was most convincing on their various data sets, and it will become the first automated timetable optimization software in use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barták, R. (1999). Constraint programming: A survey of solving technology. AIRONews journal IV, 4, 7–11.

    Google Scholar 

  • Berger, F. (2002). Minimale Kreisbasen in Graphen. Technical report, Lecture on the annual meeting of the DMV, Halle.

    Google Scholar 

  • Bixby, B. (2003). Personal communication. Rice University.

    Google Scholar 

  • Bussieck, M. R., Winter, T., and Zimmermann, U. (1997). Discrete optimization in public rail transport. Mathematical Programming (Series B), 79, 415–444.

    Google Scholar 

  • Deo, N., Prabhu, M., and Krishnamoorthy, M. S. (1982). Algorithms for generating fundamental cycles in a graph. ACM Transactions on Mathematical Software, 8, 26–42.

    Article  Google Scholar 

  • Deo, N., Kumar, N., and Parsons, J. (1995). Minimum-length fundamental-cycle set problem: A new heuristic and an SIMD implementation. Technical report CS-TR-95-04. University of Central Florida.

    Google Scholar 

  • Emden-Weinert, T. and Proksch, M. (1999). Best practice simulated annealing for the airline crew scheduling problem. Journal of Heuristics, 5, 419–436.

    Article  Google Scholar 

  • Horton, J. D. (1987). A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM Journal on Computing, 16, 358–366.

    Article  Google Scholar 

  • ILOG SA (2004). CPLEX 8.1. http://www.ilog.com/products/cplex.

    Google Scholar 

  • Laube, J. (2004). Taktfahrplanoptimierung mit Constraint Programming, diploma thesis, in German.

    Google Scholar 

  • Liebchen, C. (2003). Finding short integral cycle bases for cyclic timetabling. In G. D. Battista and U. Zwick, editors, Algorithms-ESA 2003, Lecture Notes in Computer Science 2832, pages 715–726. Springer.

    Google Scholar 

  • Liebchen, C. and Möhring, R. H. (2003). Information on MIPLIB’s timetabinstances. Technical report 049/2003, TU Berlin.

    Google Scholar 

  • Liebchen, C. and Möhring, R. H. (2007). The modeling power of the periodic event scheduling problem: Railway timetables — and beyond. This volume.

    Google Scholar 

  • Liebchen, C. and Peeters, L. (2002a). On cyclic timetabling and cycles in graphs. Technical report 761/2002, TU Berlin.

    Google Scholar 

  • Liebchen, C. and Peeters, L. (2002b). Some practical aspects of periodic timetabling. In P. Chamoni, R. Leisten, A. Martin, J. Minnemann, and H. Stadtler, editors, Operations Research Proceedings 2001, pages 25–32. Springer, Berlin.

    Google Scholar 

  • Lindner, T. (2000). Train Schedule Optimization in Public Transport. Ph.D. thesis, TU Braunschweig.

    Google Scholar 

  • Mühlenbein, H. (1997). Genetic algorithms. In E. H. L. Aarts and J. K. Lenstra, editors, Local Search in Combinatorial Optimization, pages 137–171. John Wiley & Sons.

    Google Scholar 

  • Nachtigall, K. (1994). A branch and cut approach for periodic network programming. Hildesheimer Informatik-Berichte 29.

    Google Scholar 

  • Nachtigall, K. (1996). Cutting planes for a polyhedron associated with a periodic network. Technical report, DLR Interner Bericht 17.

    Google Scholar 

  • Nachtigall, K. (1998). Periodic network optimization and fixed interval timetables, habilitation thesis.

    Google Scholar 

  • Nachtigall, K. and Voget, S. (1996). A genetic algorithm approach to periodic railway synchronization. Computers & Operations Research, 23, 453–463.

    Article  Google Scholar 

  • Odijk, M. (1997). Railway Timetable Generation. Ph.D. thesis, TU Delft.

    Google Scholar 

  • Proksch, M. (1997). Simulated Annealing und seine Anwendung auf das Crew-Scheduling-Problem, Diploma thesis, in German.

    Google Scholar 

  • Schrijver, A. and Steenbeek, A. (1993). Dienstregelingontwikkeling voor Nederlandse Spoorwegen N.V. Rapport Fase 1, in Dutch. Technical report, Centrum voor Wiskunde en Informatica.

    Google Scholar 

  • Serafini, P. and Ukovich, W. (1989). A mathematical model for periodic scheduling problems. SIAM Journal on Discrete Mathematics, 2, 550–581.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liebchen, C., Proksch, M., Wagner, F.H. (2008). Performance of Algorithms for Periodic Timetable Optimization. In: Hickman, M., Mirchandani, P., Voß, S. (eds) Computer-aided Systems in Public Transport. Lecture Notes in Economics and Mathematical Systems, vol 600. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73312-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73312-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73311-9

  • Online ISBN: 978-3-540-73312-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics