Skip to main content

A Network of Interneurons Coupled by Electrical Synapses Behaves as a Coincidence Detector

  • Conference paper
Bio-inspired Modeling of Cognitive Tasks (IWINAC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4527))

Abstract

Recent experiments show that inhibitory interneurons are coupled by electrical synapses. In this paper the information transmission properties of a network of three interneurons, coupled by electrical synapses alone, are studied by means of numerical simulations. It is shown that the network is capable to transfer the information contained in its presynapstic inputs when they are near synchronous: i.e. the network behaves as a coincidence detector. Thus, it is hypothesized that this property hold in general for networks of larger size. Lastly it is shown that these findings agree with recent experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fisahn, A., McBain, C.J.: Interneurons unbound. Nat. Rev. Neurosci. 2, 11–23 (2001)

    Google Scholar 

  2. Galarreta, M., Hestrin, S.: Electrical synapses between GABA-releasing interneurons. Nat. Neurosci. 2, 425–433 (2001)

    Article  Google Scholar 

  3. Csicsvari, J., Jamieson, B., Wise, K.D., Buzsaki, G.: Mechanisms of Gamma Oscillations in the Hippocampus of the Behaving Rat. Neuron 37, 311–322 (2003)

    Article  Google Scholar 

  4. Galarreta, M., Hestrin, S.: A network of fast-spiking cells in the cortex connected by electrical synapses. Nature 402, 72–75 (1999)

    Article  Google Scholar 

  5. Gibson, J.R., Beierlein, M., Connors, B.W.: Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79 (1999)

    Article  Google Scholar 

  6. Deans, M.R., Gibson, J.R., Sellitto, C., Connors, B.W., Paul, D.L.: Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 31, 477–485 (2001)

    Article  Google Scholar 

  7. Gibson, J.R., Beierlein, M., Connors, B.W.: Functional Properties of Electrical Synapses between Inhibitory Interneurons of Neocortical Layer 4. J. Neurophysiol. 93, 467–480 (2005)

    Article  Google Scholar 

  8. Galarreta, M., Hestrin, S.: Spike transmission and synchrony detection in networks of GABAergic interneurons. Science 292, 2295–2299 (2001)

    Article  Google Scholar 

  9. Veruki, L.M., Hartveit, E.: All (Rod) amacrine cells form a network of electrically coupled interneurons in the mammalian retina. Neuron 33, 935–946 (2002)

    Article  Google Scholar 

  10. Povysheva, N.V., Gonzalez-Burgos, G., Zaitsev, A.V., Kroner, S., Barrionuevo, G., Lewis, D.A., Krimer, L.S.: Properties of excitatory synaptic responses in fast-spiking interneurons and pyramidal cells from monkey and rat prefrontal cortex. Cerebral Cortex 16, 541–552 (2006)

    Article  Google Scholar 

  11. Di Garbo, A., Barbi, M., Chillemi, S.: Signal processing properties of fast spiking interneurons. BioSystems 86, 27–37 (2002)

    Google Scholar 

  12. Long, M.A., Landisman, C.E., Connors, B.W.: Small clusters of electrically coupled neurons generate synchronous rhythms in the thalamic reticular nucleus. J. Neurosci. 24, 341–349 (2004)

    Article  Google Scholar 

  13. Leznik, E., Llinas, R.: Role of gap junctions in the synchronized neuronal oscillations in the inferior olive. J. Neurophysiol. 94, 2447–2456 (2005)

    Article  Google Scholar 

  14. Placantonakis, D.G., Bukovsky, A.A., Aicher, S.A., Kiem, H., Welsh, J.P.: Continuous electrical oscillations emerge from a coupled network: a study of the inferior olive using lentiviral knockdown of connexin36. J. Neurosci. 26, 5008–5016 (2006)

    Article  Google Scholar 

  15. Galarreta, M., Hestrin, S.: Electrical and chemical Synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. PNAS USA 99, 12438–12443 (2002)

    Article  Google Scholar 

  16. Erisir, A., Lau, D., Rudy, B., Leonard, C.S.: Function of specific K  +  channels in sustained high-frequency firing of fast-spiking neocortical interneurons. J. Neurophysiology 82, 2476–2489 (1999)

    Google Scholar 

  17. Rinzel, J., Ermentrout, B.: Analysis of neural excitability and oscillations. In: Koch, K., Segev, I. (eds.) Methods in neural modelling, The MIT Press, Cambridge (1989)

    Google Scholar 

  18. Strettoi, E., Raviola, E., Dacheux, R.F.: Synaptic connections of the narrow-field, bistratified rod amacrine cell (All) in the rabbit retina. J. Comp. Neurol. 325, 152–168 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira José R. Álvarez

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Chillemi, S., Barbi, M., Di Garbo, A. (2007). A Network of Interneurons Coupled by Electrical Synapses Behaves as a Coincidence Detector. In: Mira, J., Álvarez, J.R. (eds) Bio-inspired Modeling of Cognitive Tasks. IWINAC 2007. Lecture Notes in Computer Science, vol 4527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73053-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73053-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73052-1

  • Online ISBN: 978-3-540-73053-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics