Skip to main content

Relating Discontinuous Cardiac Electrical Activity to Mesoscale Tissue Structures: Detailed Image Based Modeling

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4466))

  • 1272 Accesses

Abstract

We relate aspects of discontinuous cardiac activation to the mesoscale myocardial structural feature of interlaminae clefts or cleavage planes. Specialized numerical and computational procedures have been developed for modeling cardiac activation which accounts for detailed myocardial geometric structures derived from specific tissue samples. This modeling allows both study and analysis of the effects of cleavage planes and other structural barriers to myocardial current flow. The results show that mesoscale discontinuities significantly affect the formation of virtual electrodes, and can result in discontinuous activation with midwall pacing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kléber, A.G., Rudy, Y.: Basic Mechanisms of Cardiac Impulse Propagation and Associated Arrhythmias. Physiol. Rev. 84, 431–488 (2004)

    Article  Google Scholar 

  2. Spach, M.S., Heidlage, J.F., Barr, R.C., Dolber, P.C.: Cell Size and Communication: Role in Structural and Electrical Development and Remodeling of the Heart. Heart Rhythm. 4, 500–515 (2004)

    Article  Google Scholar 

  3. Spach, M.S., Barr, R.C.: Effects of Cardiac Microstructure on Propagating Electrical Waveforms. Circ. Res. 86, e23–e28 (2000)

    Google Scholar 

  4. Sharifov, O.F., Fast, V.G.: Optical Mapping of Transmural Activation Induced by Electrical Shocks in Isolated Left Ventricular Wall Wedge Preparations. J. Cardiovasc Electr. 14(11), 1215–1222 (2003)

    Article  Google Scholar 

  5. Fast, V.G., Rohr, S., Gillis, A.M., Kléber, A.G.: Activation of Cardiac Tissue by Extracellular Electrical Shocks: Formation of “Secondary Sources” at Intercellular Clefts in Monolayers of Cultured Myocytes. Circ. Res. 82, 375–385 (1998)

    Google Scholar 

  6. White, J.B., Walcott, G.P., Pollard, A.E., Ideker, R.E.: Myocardial Discontinuities. A Substrate for Producing Virtual Electrodes That Directly Excite the Myocardium by Shocks. Circulation 97, 1738–1745 (1998)

    Google Scholar 

  7. Hooks, D.A., Tomlinson, K.A., Marsden, S., LeGrice, I.J, Smaill, B.H., Pullan, A.J., Hunter, P.J.: Cardiac Microstructure: Implications for Electrical Propagation and Defibrillation in the Heart. Circ. Res. 91(4), 331–338 (2002)

    Article  Google Scholar 

  8. Vetter, F.J., Simons, S.B., Mironov, S., Hyatt, C.J., Pertsov, A.M.: Epicardial Fiber Organization in Swine Right Ventricle and Its Impact on Propagation. Circ. Res. 96, 244–251 (2005)

    Article  Google Scholar 

  9. Ellis, W.S., Auslander, D.M., Lesh, M.D.: Fractionated Electrograms From a Computer Model of Heterogeneously Uncoupled Anisotropic Ventricular Myocardium. Circulation 92, 1619–1626 (1995)

    Google Scholar 

  10. LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B., Hunter, P.J.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol-Heart C. 269, H571–H582 (1995)

    Google Scholar 

  11. Young, A.A., LeGrice, I.J., Young, M.A., Smaill, B.H.: Extended confocal microscopy of myocardial laminae and collagen network. J. Microsc 192(2), 139–150 (1998)

    Article  Google Scholar 

  12. Sands, G.B., Gerneke, D.A., Hooks, D.A, Green, C.R., Smaill, B.H., LeGrice, I.J.: Automated Imaging of Extended Tissue Volumes using Confocal Microscopy. Microsc. Res. Techniq. 67(5), 227–239 (2005)

    Article  Google Scholar 

  13. Scollan, D.F., Holmes, A., Winslow, R.L., Forder, J.: Histological Validation of Myocardial Microstructure Obtained from Diffusion Tensor Magnetic Resonance Imaging. Am. J. Physiol-Heart C. 275, H2308–H2318 (1998)

    Google Scholar 

  14. Harrington, K.B., Rodriguez, F., Cheng, A., Langer, F., Ashikaga, H., Daughters, G.T., Criscione, J.C., Ingels, N.B., Miller, D.C.: Direct Measurement of Transmural Laminar Architecture in the Anterolateral Wall of the Ovine Left Ventricle: New Implications for Wall Thickening Mechanics. Am. J. Physiol-Heart C. 288, 1324–1330 (2005)

    Article  Google Scholar 

  15. Trew, M.L., LeGrice, I.J, Smaill, B.H., Pullan, A.J.: A Finite Volume Method for Modeling Discontinuous Electrical Activation in Cardiac Tissue. Ann. Biomed Eng. 33(5), 591–600 (2005)

    Article  Google Scholar 

  16. Sands, G.B., Trew, M.L., Hooks, D.A., LeGrice, I.J., Pullan, A.J., Smaill, B.H.: Constructing a Tissue-Specific Model of Ventricular Microstructure. In: Proc. 26th Ann. Int. Conf. IEEE EMBS, San Francisco, CA, pp. 3589–3592. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  17. Street, A.M, Plonsey, R.: Propagation in Cardiac Tissue Adjacent to Connective Tissue: Two-Dimensional Modeling Studies. IEEE T. Bio.-med Eng. 46(1), 19–25 (1999)

    Article  Google Scholar 

  18. Hooks, D.A., Trew, M.L., Smaill, B.H., Pullan, A.J.: Evidence that Intramural Virtual Electrodes Facilitate Successful Defibrillation. Model Based Analysis of Experimental Evidence. J. Cardiovasc Electr. 17(3), 305–311 (2006)

    Article  Google Scholar 

  19. Sharifov, O.F., Fast, V.G.: Role of Intramural Virtual Electrodes in Shock-Induced Activation of Left Ventricle: Optical Measurements from the Intact Epicardial Surface. Heart Rhythm 3(9), 1063–1073 (2006)

    Article  Google Scholar 

  20. Muzikant, A.L., Hsu, E.W., Wolf, P,D., Henriquez, C.S.: Region Specific Modeling of Cardiac Muscle: Comparison of Simulated and Experimental Potentials. Ann. Biomed Eng. 30, 867–883 (2002)

    Article  Google Scholar 

  21. Hunter, P.J., McNaughton, P.A., Noble, D.: Analytical Models of Propagation in Excitable Cells. Prog. Biophys. Mol. Bio. 30(2/3), 99–144 (1975)

    Google Scholar 

  22. Skouibine, K.B., Trayanova, N.A., Moore, P.K.: A Numerically Efficient Model for Simulation of Defibrillation in an Active Bidomain Sheet of Myocardium. Math. Biosci. 166, 85–100 (2000)

    Article  MATH  Google Scholar 

  23. Grill, W.M., Mortimer, J.T.: Electrical Properties of Implant Encapsulation Tissue. Ann. Biomed. Eng. 22, 23–33 (1994)

    Article  Google Scholar 

  24. Roth, B.J.: Electrical Conductivity Values Used with the Bidomain Model of Cardiac Tissue. IEEE T. Bio.-med Eng. 44(4), 326–328 (1997)

    Article  Google Scholar 

  25. Austin, T.M., Trew, M.L., Pullan, A.J.: Solving the Cardiac Bidomain Equations for Discontinuous Conductivities. IEEE T. Bio.-med Eng. 53(7), 1265–1272 (2006)

    Article  Google Scholar 

  26. Punske, B.B., Ni, Q., Lux, R.L., MacLeod, R.S., Ersher, P.R., Dustman, T.J., Alison, M.J., Taccardi, B.: Spatial Methods of Epicardial Activation Time Determination in Normal Hearts. Ann. Biomed Eng. 31, 781–792 (2003)

    Article  Google Scholar 

  27. Trew, M.L., Caldwell, B.J., Sands, G.B., Hooks, D.A., Tai, D.C.S, Austin, T.M., LeGrice, I.J., Pullan, A.J., Smaill, B.H.: Cardiac Electrophysiology and Tissue Structure: Bridging the Scale Gap with a Joint Measurement and Modelling Paradigm. Exp. Physiol. 91(2), 355–370 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank B. Sachse Gunnar Seemann

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Trew, M.L., Smaill, B.H., Pullan, A.J. (2007). Relating Discontinuous Cardiac Electrical Activity to Mesoscale Tissue Structures: Detailed Image Based Modeling. In: Sachse, F.B., Seemann, G. (eds) Functional Imaging and Modeling of the Heart. FIMH 2007. Lecture Notes in Computer Science, vol 4466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72907-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72907-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72906-8

  • Online ISBN: 978-3-540-72907-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics