Skip to main content

The Tracking Speed of Continuous Attractors

  • Conference paper
Advances in Neural Networks – ISNN 2007 (ISNN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4491))

Included in the following conference series:

Abstract

Continuous attractor is a promising model for describing the encoding of continuous stimuli in neural systems. In a continuous attractor, the stationary states of the neural system form a continuous parameter space, on which the system is neutrally stable. This property enables the neutral system to track time-varying stimulus smoothly. In this study we investigate the tracking speed of continuous attractors. In order to analyze the dynamics of a large-size network, which is otherwise extremely complicated, we develop a strategy to reduce its dimensionality by utilizing the fact that a continuous attractor can eliminate the input components perpendicular to the attractor space very quickly. We therefore project the network dynamics onto the tangent of the attractor space, and simplify it to be a one-dimension Ornstein-Uhlenbeck process. With this approximation we elucidate that the reaction time of a continuous attractor increases logarithmically with the size of the stimulus change. This finding may have important implication on the mental rotation behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hopfield, J.J.: Neurons with Graded Responses Have Collective Computational Properties Like those of Two-State Neurons. Proc. Natl. Acad. Sci. USA 81, 3088–3092 (1984)

    Article  Google Scholar 

  2. Amari, S.: Dynamics of Pattern Formation in Lateral-Inhibition Type Neural Fields. Biological Cybernetics 27, 77–87 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Georgopoulos, A.P., Kalaska, J.F., Caminiti, R., Massey, J.T.: On the Relations between the Direction of Two-Dimensional Arm Movements and Cell Discharge in Primate Motor Cortex. J. Neurosci. 2, 1527–1537 (1982)

    Google Scholar 

  4. Maunsell, J.H.R., Van Essen, D.C.: Functional Properties of Neurons in Middle Temporal Visual Area of the Macaque Monkey. I. Selectivity for Stimulus Direction, Speed, and Orientation. J. Neurophysiology 49, 1127–1147 (1983)

    Google Scholar 

  5. Funahashi, S., Bruce, C., Goldman-Rakic, P.: Mnemonic Coding of Visual Space in the Monkey’s Dorsolateral Prefrontal Cotex. J. Neurophysiology 61, 331–349 (1989)

    Google Scholar 

  6. Wilson, M.A., McNaughton, B.L.: Dynamics of Hippocampal Ensemble Code for Space. Science 261, 1055–1058 (1993)

    Article  Google Scholar 

  7. Zhang, K.C.: Representation of Spatial Orientation By the Intrinsic Dynamics of the Head-Direction Cell Ensemble: A Theory. J. Neuroscience 16, 2112–2126 (1996)

    Google Scholar 

  8. Seung, H.S.: How the Brain Keeps the Eyes Still. Proc. Acad. Sci. USA 93, 13339–13344 (1996)

    Article  Google Scholar 

  9. Ermentrout, B.: Neural networks as Spatial-Temporal Pattern-Forming Systems. Reports on progress in physics 61, 353–430 (1998)

    Article  Google Scholar 

  10. Taube, J.S.: Head Direction Cells and the Neurophysiological Basis for A Sense of Direction. Prog. Neurobiol. 55, 225–256 (1998)

    Article  Google Scholar 

  11. Deneve, S., Latham, P.E., Pouget, A.: Reading Population Codes: A Neural Implementation of Ideal Observers. Nature Neuroscience 2, 740–745 (1999)

    Article  Google Scholar 

  12. Wang, X.J.: Synaptic Reverberation Underlying Mnemonic Persistrent Activitity. Trends in Neuroscience 24, 455–463 (2001)

    Article  Google Scholar 

  13. Wu, S., Amari, S., Nakahara, H.: Population Coding and Decoding in A Neural Field: A Computational Study. Neural Computation 14, 999–1026 (2002)

    Article  MATH  Google Scholar 

  14. Trappenberg, T.: Continuous Attractor Neural Networks. In: de Castro, L.N., Von Zuben, F.J. (eds.) Recent Developments in biologically inspired computing, Idea Group Publishing, Hershey (2004)

    Google Scholar 

  15. Wu, S., Amari, S.: Computing with Continuous Attractors: Stability and On-Line Aspects. Neural Computation 17, 2215–2239 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tuckwell, H.: Introduction to Theoretical Neurobiology. Cambridge University Press, Cambridge (1988)

    Book  MATH  Google Scholar 

  17. Koriat, A., Norman, J.: Establishing Global and Local Correspondence Between Successive Stimuli: The Holistic Nature of Backward Alignment. J. of Experimental Psychology 15, 480–494 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, S., Hamaguchi, K., Amari, Si. (2007). The Tracking Speed of Continuous Attractors. In: Liu, D., Fei, S., Hou, ZG., Zhang, H., Sun, C. (eds) Advances in Neural Networks – ISNN 2007. ISNN 2007. Lecture Notes in Computer Science, vol 4491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72383-7_108

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72383-7_108

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72382-0

  • Online ISBN: 978-3-540-72383-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics