Skip to main content

Enhancing Motif Refinement by Incorporating Comparative Genomics Data

  • Conference paper
Book cover Bioinformatics Research and Applications (ISBRA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4463))

Included in the following conference series:

  • 832 Accesses

Abstract

Transcription factor binding sites (TFBS) are often located in the upstream regions of genes and transcription factors (TFs) cause transcription regulation by binding at these locations. Predicting these binding sites is a difficult problem, and traditional methods have a high degree of false positives in their predictions. Comparative genomics data can help to improve motif predictions. In this paper, a new strategy is presented, which refines motif by taking the comparative genomics data into account. Tested with the help of both simulation data and biological data, we show that our method makes improved predictions. We also propose a new metric to score a motif profile. This score is biologically motivated and helps the algorithm in its predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stormo, G.D.: DNA binding sites: representation and discovery. Bioinformatics 16(1), 16–23 (2000)

    Article  Google Scholar 

  2. Werner, T.: Models for prediction and recognition of eukaryotic promoters. Mamm. Genome 10(2), 168–175 (1999)

    Article  Google Scholar 

  3. Hughes, J.D., et al.: Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J. Mol. Biol. 296(5), 1205–1214 (2000)

    Article  Google Scholar 

  4. Bailey, T.L., Elkan, C.: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: Proc. Int. Conf. Intell. Syst. Mol. Biol., vol. 2, pp. 28–36 (1994)

    Google Scholar 

  5. Liu, X., Brutlag, D.L., Liu, J.S.: BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. In: Pac. Symp. Biocomput., pp. 127–138 (2001)

    Google Scholar 

  6. Liu, X.S., Brutlag, D.L., Liu, J.S.: An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nat. Biotechnol. 20(8), 835–839 (2002)

    Google Scholar 

  7. Sinha, S., Tompa, M.: YMF: A program for discovery of novel transcription factor binding sites by statistical overrepresentation. Nucleic Acids Res. 31(13), 3586–3588 (2003)

    Article  Google Scholar 

  8. Pavesi, G., et al.: Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res. 32(Web Server issue), W199–203 (2004)

    Google Scholar 

  9. Hertz, G.Z., Stormo, G.D.: Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15(7-8), 563–577 (1999)

    Article  Google Scholar 

  10. Friberg, M., von Rohr, P., Gonnet, G.: Scoring functions for transcription factor binding site prediction. BMC Bioinformatics 6, 84 (2005)

    Article  Google Scholar 

  11. Jensen, S.T., Liu, J.S.: BioOptimizer: a Bayesian scoring function approach to motif discovery. Bioinformatics 20(10), 1557–1564 (2004)

    Article  Google Scholar 

  12. MacIsaac, K.D., Fraenkel, E.: Practical strategies for discovering regulatory DNA sequence motifs. PLoS Comput. Biol. 2(4), e36 (2006)

    Google Scholar 

  13. Sandve, G.K., Drablos, F.: A survey of motif discovery methods in an integrated framework. Biol. Direct 1, 11 (2006)

    Article  Google Scholar 

  14. Guha Thakurta, D.: Computational identification of transcriptional regulatory elements in DNA sequence. Nucleic Acids Res. 34(12), 3585–3598 (2006)

    Article  Google Scholar 

  15. van Nimwegen, E., et al.: Probabilistic clustering of sequences: inferring new bacterial regulons by comparative genomics. Proc. Natl. Acad. Sci. U S A 99(11), 7323–7328 (2002)

    Article  MATH  Google Scholar 

  16. Xie, X., et al.: Systematic discovery of regulatory motifs in human promoters and 3’ UTRs by comparison of several mammals. Nature 434(7031), 338–345 (2005)

    Article  Google Scholar 

  17. Gertz, J., et al.: Discovery, validation, and genetic dissection of transcription factor binding sites by comparative and functional genomics. Genome Res. 15(8), 1145–1152 (2005)

    Article  Google Scholar 

  18. Gertz, J., Fay, J.C., Cohen, B.A.: Phylogeny based discovery of regulatory elements. BMC Bioinformatics 7, 266 (2006)

    Article  Google Scholar 

  19. Blanchette, M., Tompa, M.: Discovery of regulatory elements by a computational method for phylogenetic footprinting. Genome Res. 12(5), 739–748 (2002)

    Article  Google Scholar 

  20. Moses, A.M., Chiang, D.Y., Eisen, M.B.: Phylogenetic motif detection by expectation-maximization on evolutionary mixtures. In: Pac. Symp. Biocomput. 2004, pp. 324–335 (2004)

    Google Scholar 

  21. Wang, T., Stormo, G.D.: Combining phylogenetic data with co-regulated genes to identify regulatory motifs. Bioinformatics 19(18), 2369–2380 (2003)

    Article  Google Scholar 

  22. Sinha, S., Blanchette, M., Tompa, M.: PhyME: a probabilistic algorithm for finding motifs in sets of orthologous sequences. BMC Bioinformatics 5, 170 (2004)

    Article  Google Scholar 

  23. Siddharthan, R., Siggia, E.D., van Nimwegen, E.: PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny. PLoS Comput. Biol. 1(7), e67 (2005)

    Article  Google Scholar 

  24. Comin, M., Parida, L.: Subtle Motif Discovery for Detection of DNA regulatory sites. In: Asia Pacific Bioinformatics Conference (APBC2007), Hong Kong (2007)

    Google Scholar 

  25. Tompa, M., et al.: Assessing computational tools for the discovery of transcription factor binding sites. Nat. Biotechnol. 23(1), 137–144 (2005)

    Article  MathSciNet  Google Scholar 

  26. Chu, S., et al.: The transcriptional program of sporulation in budding yeast. Science 282(5389), 699–705 (1998)

    Article  Google Scholar 

  27. Narasimhan, C., LoCascio, P., Uberbacher, E.: Background rareness-based iterative multiple sequence alignment algorithm for regulatory element detection. Bioinformatics 19(15), 1952–1963 (2003)

    Article  Google Scholar 

  28. Mitchell, A.P.: Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiol. Rev. 58(1), 56–70 (1994)

    Google Scholar 

  29. Rubin-Bejerano, I., et al.: Induction of meiosis in Saccharomyces cerevisiae depends on conversion of the transcriptional represssor Ume6 to a positive regulator by its regulated association with the transcriptional activator Ime1. Mol. Cell Biol. 16(5), 2518–2526 (1996)

    Google Scholar 

  30. Kellis, M., et al.: Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423(6937), 241–254 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zeng, E., Narasimhan, G. (2007). Enhancing Motif Refinement by Incorporating Comparative Genomics Data. In: Măndoiu, I., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2007. Lecture Notes in Computer Science(), vol 4463. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72031-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72031-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72030-0

  • Online ISBN: 978-3-540-72031-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics