Skip to main content

An Efficient Method for Dynamic Analysis of Gene Regulatory Networks and in silico Gene Perturbation Experiments

  • Conference paper
Book cover Research in Computational Molecular Biology (RECOMB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4453))

Abstract

With the increasing availability of experimental data on gene-gene and protein-protein interactions, modeling of gene regulatory networks has gained a special attention lately. To have a better understanding of these networks it is necessary to capture their dynamical properties, by computing its steady states. Various methods have been proposed to compute steady states but almost all of them suffer from the state space explosion problem with the increasing size of the networks. Hence it becomes difficult to model even moderate sized networks using these techniques. In this paper, we present a new representation of gene regulatory networks, which facilitates the steady state computation of networks as large as 1200 nodes and 5000 edges. We benchmarked and validated our algorithm on the T helper model from [8] and performed in silico knock out experiments: showing both a reduction in computation time and correct steady state identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans. on Computers 35, 677–691 (1986)

    Article  MATH  Google Scholar 

  2. Burch, J.R., Clarke, E.M., Long, D.E., MacMillan, K.L., Dill, D.L.: Symbolic Model Checking for Sequential Circuit Verification. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 13, 401–424 (1994)

    Article  Google Scholar 

  3. Touati, H.J, Savoj, H., Lin, B., Brayton, R.K., Sangiovanni-Vincentelli, A.: Implicit state enumeration of finite-state machines using BDDs. In: Proc. of ICCAD (1990)

    Google Scholar 

  4. Agnello, D., Lankford, C.S.R., Bream, J., Morinobu, A., Gadina, M., OShea, J., Frucht, D.M.: Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights. J. Clin. Immun. 23, 147–162 (2003)

    Article  Google Scholar 

  5. Bergmann, C., van Hemmen, J.L.: Th1 or Th2: how an appropriate T helper response can be made. Bull. Math. Bio. 63, 405–430 (2001)

    Article  Google Scholar 

  6. Krueger, G.R., Marshall, G.R., Junker, U., Schroeder, H., Buja, L.M., Wang, G.: Growth factors, cytokines, chemokines and neuropeptides in the modeling of T-cells. In Vivo 16, 365–586 (2002)

    Google Scholar 

  7. Mendoza, L.: A network model for the control of the differentiation process in Th cells. BioSystems 84, 101–114 (2006)

    Article  Google Scholar 

  8. Mendoza, L., Xenarios, I.: A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theoretical Biology and Medical Modelling 3 (2006)

    Google Scholar 

  9. Mendoza, L., Thieffry, D., Alvarez-Buylla, E.R.: Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis. BioInfo. 15, 593–606 (1999)

    Article  Google Scholar 

  10. Murphy, K.M., Reiner, S.L.: The lineage decisions on helper T cells. Nat. Rev. Immun. 2, 933–944 (2002)

    Article  Google Scholar 

  11. Szabo, S.J., Sullivan, B.M., Peng, S.L., Glimcher, L.H.: Molecular mechanisms regulating Th1 immune responses. Ann. Rev. Immun. 21, 713–758 (2003)

    Article  Google Scholar 

  12. Thieffry, D., Sánchez, L.: Alternative epigenetic states understood in terms of specific regulatory structures. Ann. N.Y. Acad. Sci. 981, 135–153 (2002)

    Article  Google Scholar 

  13. Sánchez, L., Thieffry, D.: Segmenting the fly embryo: a logical analysis of the pair-rule cross-regulatory module. Jour. Theo. Bio. 224, 517–537 (2003)

    Article  Google Scholar 

  14. Thomas, R.: Regulatory networks seen as asynchronous automata: a logical description. Jour. Theo. Bio. 153, 1–23 (1991)

    Article  Google Scholar 

  15. Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regulatory networks-I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biology 57, 247–276 (1995)

    MATH  Google Scholar 

  16. Weisbuch, G., DeBoer, R.J., Perelson, A.S.: Localized memories in idiotypic networks. Jour. Theo. Bio. 146, 483–499 (1990)

    Article  Google Scholar 

  17. Yates, A., Bergmann, C., van Hemmen, J.L., Stark, J., Callard, R.: Cytokine-modulated regulation of helper T cell populations. Jour. Theo. Bio. 206, 539–560 (2000)

    Article  Google Scholar 

  18. Xie, A., Beerel, P.A.: Efficient State Classification of Finite State Markov Chains. In: Proc. of DAC (1998)

    Google Scholar 

  19. Hachtel, G., Macii, E., Pardo, A., Somenzi, F.: Markovian analysis of large finite state machines. IEEE Trans. on CAD 15, 1479–1493 (1996)

    Google Scholar 

  20. Somenzi, F.: CUDD: CU Decision Diagram Package Release 2.4.1. University of Colorado at Boulder (2005)

    Google Scholar 

  21. Brayton, R.K., Sangiovanni-Vincentelli, A.L., McMullen, C.T., Hachtel, G.D.: Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, Dordrecht (1984)

    MATH  Google Scholar 

  22. DeMicheli, G.: Synthesis and Optimization of Digital Circuits. McGraw-Hill Higher Education, New York (1994)

    Google Scholar 

  23. Burch, J.R., Clarke, E.M., MacMillan, K.L., Dill, D.L., Hwang, L.H.: Symbolic Model Checking: 1020 States and Beyond. In: Proc. of the IEEE Symp. on Logic in Computer Science, IEEE Computer Society Press, Los Alamitos (1990)

    Google Scholar 

  24. Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, S.K., Tasiran, S.: MOCHA: Modularity in Model Checking. In: CAV (1998)

    Google Scholar 

  25. Diehl, S., Anguita, J., Hoffmeyer, A., Zapton, T., Ihle, J.N., Fikrig, E., Rincón, M.: Inhibition of Th1 differentiation by IL-6 is mediated by SOCS1. Immunity 13, 805–815 (2000)

    Article  Google Scholar 

  26. Tang, H., Sharp, G.C., Peterson, K.P., Braley-Mullen, H.: IFN-g-deficient mice develop severe granulomatous experimental autoimmune thyroiditis with eosinophil infiltration in thyroids. Jour. Immun. 160, 5105–5112 (1998)

    Google Scholar 

  27. Bernot, G., Comet, J.P., Richard, A., Guespin, J.: Application of formal methods to biological regulatory networks: extending Thomas’ asynchronous logical approach with temporal logic. Jour. Theo. Bio. 229, 339–347 (2004)

    Article  MathSciNet  Google Scholar 

  28. Devloo, V., Hansen, P., Labb, M.: Identification Of All Steady States In Large Biological Systems By Logical Analysis. Bull. Math. Bio. 65, 1025–1051 (2003)

    Article  Google Scholar 

  29. Chabrier, N., Fages, F., Soliman, S.: BIOCHAM. In: Proc. of CMSB (May 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Terry Speed Haiyan Huang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Garg, A., Xenarios, I., Mendoza, L., DeMicheli, G. (2007). An Efficient Method for Dynamic Analysis of Gene Regulatory Networks and in silico Gene Perturbation Experiments. In: Speed, T., Huang, H. (eds) Research in Computational Molecular Biology. RECOMB 2007. Lecture Notes in Computer Science(), vol 4453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71681-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71681-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71680-8

  • Online ISBN: 978-3-540-71681-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics