Skip to main content

New Approximation Algorithms for Minimum Cycle Bases of Graphs

  • Conference paper
Book cover STACS 2007 (STACS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4393))

Included in the following conference series:

Abstract

We consider the problem of computing an approximate minimum cycle basis of an undirected edge-weighted graph G with m edges and n vertices; the extension to directed graphs is also discussed. In this problem, a {0,1} incidence vector is associated with each cycle and the vector space over \(\mathbb{F}_2\) generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of the weights of the cycles is minimum is called a minimum cycle basis of G. Cycle bases of low weight are useful in a number of contexts, e.g. the analysis of electrical networks, structural engineering, chemistry, and surface reconstruction.

We present two new algorithms to compute an approximate minimum cycle basis. For any integer k ≥ 1, we give (2k − 1)-approximation algorithms with expected running time O(k m n 1 + 2/k + m n (1 + 1/k)(ω − 1)) and deterministic running time O( n 3 + 2/k ), respectively. Here ω is the best exponent of matrix multiplication. It is presently known that ω < 2.376. Both algorithms are o( m ω) for dense graphs. This is the first time that any algorithm which computes sparse cycle bases with a guarantee drops below the Θ(m ω) bound.

We also present a 2-approximation algorithm with \(O(m^{\omega}\sqrt{n\log n})\) expected running time, a linear time 2-approximation algorithm for planar graphs and an O(n 3) time 2.42-approximation algorithm for the complete Euclidean graph in the plane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stepanec, G.F.: Basis systems of vector cycles with extremal properties in graphs. Uspekhi Mat. Nauk 19, 171–175 (1964)

    MathSciNet  MATH  Google Scholar 

  2. Horton, J.D.: A polynomial-time algorithm to find a shortest cycle basis of a graph. SIAM Journal of Computing 16, 359–366 (1987)

    Article  MathSciNet  Google Scholar 

  3. de Pina, J.: Applications of Shortest Path Methods. PhD thesis, University of Amsterdam, Netherlands (1995)

    Google Scholar 

  4. Golynski, A., Horton, J.D.: A polynomial time algorithm to find the minimum cycle basis of a regular matroid. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Berger, F., Gritzmann, P., de Vries, S.: Minimum cycle basis for network graphs. Algorithmica 40(1), 51–62 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kavitha, T., et al.: A faster algorithm for minimum cycle basis of graphs. In: Díaz, J., et al. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 846–857. Springer, Heidelberg (2004)

    Google Scholar 

  7. Huber, M.: Implementation of algorithms for sparse cycle bases of graphs. Technical report, Technische Universität München (2002), http://www-m9.ma.tum.de/dm/cycles/mhuber

  8. Kreisbasenbibliothek CyBaL (2004), http://www-m9.ma.tum.de/dm/cycles/cybal

  9. Mehlhorn, K., Michail, D.: Implementing minimum cycle basis algorithms. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 32–43. Springer, Heidelberg (2005)

    Google Scholar 

  10. Swamy, M.N.S., Thulasiraman, K.: Graphs, Networks, and Algorithms. John Wiley & Sons, New York (1981)

    MATH  Google Scholar 

  11. Cassell, A.C., Henderson, J.C., Ramachandran, K.: Cycle bases of minimal measure for the structural analysis of skeletal structures by the flexibility method. Proc. Royal Society of London Series A 350, 61–70 (1976)

    Article  MATH  Google Scholar 

  12. Gleiss, P.M.: Short Cycles, Minimum Cycle Bases of Graphs from Chemistry and Biochemistry. PhD thesis, Fakultät Für Naturwissenschaften und Mathematik der Universität Wien (2001)

    Google Scholar 

  13. Tewari, G., Gotsman, C., Gortler, S.J.: Meshing genus-1 point clouds using discrete one-forms. Computers and Graphics, to appear (2006)

    Google Scholar 

  14. Coppersmith, D., Winograd, S.: Matrix multiplications via arithmetic progressions. Journal of Symb. Comput. 9, 251–280 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kavitha, T., Mehlhorn, K.: A polynomial time algorithm for minimum cycle basis in directed graphs. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 654–665. Springer, Heidelberg (2005)

    Google Scholar 

  16. Liebchen, C., Rizzi, R.: A greedy approach to compute a minimum cycle basis of a directed graph. Inf. Process. Lett. 94(3), 107–112 (2005)

    Article  MathSciNet  Google Scholar 

  17. Hariharan, R., Kavitha, T., Mehlhorn, K.: A faster deterministic algorithm for minimum cycle basis in directed graphs. In: Bugliesi, M., et al. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 250–261. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Kavitha, T.: An Õ(m 2 n) randomized algorithm to compute a minimum cycle basis of a directed graph. In: Caires, L., et al. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 273–284. Springer, Heidelberg (2005)

    Google Scholar 

  19. Althöfer, I., et al.: On sparse spanners of weighted graphs. Discrete Comput. Geom. 9(1), 81–100 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Thorup, M., Zwick, U.: Approximate distance oracles. In: ACM Symposium on Theory of Computing, pp. 183–192. ACM Press, New York (2001)

    Google Scholar 

  21. Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of 13th ACM Symposium on Parallel Algorithms and Architecture, pp. 1–10. ACM Press, New York (2001)

    Google Scholar 

  22. Apostol, T.M.: Introduction to Analytic Number Theory. Springer, Heidelberg (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang Thomas Pascal Weil

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Kavitha, T., Mehlhorn, K., Michail, D. (2007). New Approximation Algorithms for Minimum Cycle Bases of Graphs. In: Thomas, W., Weil, P. (eds) STACS 2007. STACS 2007. Lecture Notes in Computer Science, vol 4393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70918-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70918-3_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70917-6

  • Online ISBN: 978-3-540-70918-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics