Skip to main content

Human-Robot Interaction Control Using Force and Vision

  • Chapter
Advances in Control Theory and Applications

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 353))

Abstract

The extension of application domains of robotics from factories to human environments leads to implementing proper strategies for close interaction between people and robots. In order to avoid dangerous collision, force and vision based control can be used, while tracking human motion during such interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Santis A, Siciliano B, Villani L (2006) The Atlas of Physical Human-Robot Interaction, Final Report of the EURON Perspective Research Project PHRIDOM

    Google Scholar 

  2. Zinn M, Khatib O, Roth B, Salisbury J K (2004) Playing it safe [human-friendly robot], IEEE Robotics and Automation Magazine, 11(2):12–21

    Article  Google Scholar 

  3. Bicchi A, Tonietti G (2004) Fast and “soft-arm” tactics, IEEE Robotics and Automation Magazine 11(2):22–33

    Article  Google Scholar 

  4. Hashimoto H (2005) Intelligent interactive spaces — integration of IT and robotics, In: Proceedings of 2005 IEEE Workshop on Advanced Robotics and its Social Impacts, 85–90

    Google Scholar 

  5. Hosoda K, Igarashi K, Asada M (1998) Adaptive hybrid control for visual and force servoing in an unknownenvironment, IEEE Robotics and Automation Magazine 5(4):39–43

    Article  Google Scholar 

  6. Nelson BJ, Morrow JD, Khosla PK (1995) Improved force control through visual servoing, In: Proceedings of 1995 American Control Conference, 380–386

    Google Scholar 

  7. Baeten J, De Schutter J (2004) Integrated Visual Servoing and Force Control. The Task Frame Approach, Springer, Berlin Heidelberg New York

    Google Scholar 

  8. Morel G, Malis E, Boudet S (1998) Impedance based combination of visual and force control, In: Proceedings of 1998 IEEE International Conference on Robotics and Automation, 1743–1748

    Google Scholar 

  9. Olsson T, Johansson R, Robertsson A (2004) Flexible force-vision control for surface following using multiple cameras, In: Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and System, 798–803

    Google Scholar 

  10. Hirzinger G, Albu-Schaeffer A, Hahnle M, Schaefer I, Sporer N (2001) On a new generation of torque controlled light-weight robots, In: Proceedings of 2001 IEEE International Conference of Robotics and Automation, 3356–3363

    Google Scholar 

  11. http://www.barretttechnology.com/robot/products/arm/armfram.htm

    Google Scholar 

  12. De Luca A (2000) Feedforward/feedback laws for the control of flexible robots, In: Proceedings of 2000 IEEE International Conference on Robotics and Automation, 233–240

    Google Scholar 

  13. De Luca A, Lucibello P (1998) A general algorithm for dynamic feedback linearization of robots with elastic joint, In: Proceedings of 1998 IEEE International Conference on Robotics and Automation, 504–510

    Google Scholar 

  14. Siciliano B, Villani L (1999) Robot Force Control, Kluwer, Dordrecht Boston London

    MATH  Google Scholar 

  15. De Santis A, Albu-Schaeffer A, Ott C, Siciliano B, Hirzinger G (2007), The skeleton algorithm for real-time collision avoidance of a humanoid manipulator interacting with humans, Submitted to IEEE Transactions on Robotics

    Google Scholar 

  16. De Santis A, Pierro P, Siciliano B (2006) The virtual end-effectors approach for human-robot interaction, In: Lenarčič J, Roth B (eds) Advances in Robot Kinematics, Springer, Berlin Heidelberg New York, 133–144

    Chapter  Google Scholar 

  17. Lippiello V, Siciliano B, Villani L (2006) 3D pose estimation for robotic applications based on a multi-camera hybrid visual system, In: Proceedings of 2006 IEEE International Conference on Robotics and Automation, 2732–2737

    Google Scholar 

  18. Espiau B, Chaumette F, Rives P (1992) A new approach to visual servoing in robotics, IEEE Transactions on Robotics and Automation, 8:313–326

    Article  Google Scholar 

  19. Lippiello V, Villani L (2003) Managing redundant visual measurements for accurate pose tracking, Robotica, 21:511–519

    Article  Google Scholar 

  20. Wilson W J, Hulls C C W, Bell G S (1996) Relative end-effector control using Cartesian position based visual servoing, IEEE Transactions on Robotics and Automation, 12:684–696

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De Santis, A., Lippiello, V., Siciliano, B., Villani, L. (2007). Human-Robot Interaction Control Using Force and Vision. In: Bonivento, C., Marconi, L., Rossi, C., Isidori, A. (eds) Advances in Control Theory and Applications. Lecture Notes in Control and Information Sciences, vol 353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70701-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70701-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70700-4

  • Online ISBN: 978-3-540-70701-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics