Skip to main content

Sensor Placement for 3-Coverage with Minimum Separation Requirements

  • Conference paper
Distributed Computing in Sensor Systems (DCOSS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5067))

Included in the following conference series:

Abstract

Sensors have been increasingly used for many ubiquitous computing applications such as asset location monitoring, visual surveillance, and human motion tracking. In such applications, it is important to place sensors such that every point of the target area can be sensed by more than one sensor. Especially, many practical applications require 3-coverage for triangulation, 3D hull building, and etc. Also, in order to extract meaningful information from the data sensed by multiple sensors, those sensors need to be placed not too close to each other—minimum separation requirement. To address the 3-coverage problem with the minimum separation requirement, this paper proposes two methods, so called, overlaying method and TRE-based method, which complement each other depending on the minimum separation requirement. For these two methods, we also provide mathematical analysis that can clearly guide us when to use the TRE-based method and when to use the overlaying method and also how many sensors are required. To the best of our knowledge, this is the first work that systematically addresses the 3-coverage problem with the minimum separation requirement.

This work was supported in part by Korean Ministry of Knowledge Economy grant 10030826 and in part by IITA through the IT Leading R&D Support Project. The corresponding author is Chang-Gun Lee.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kershner, R.: The Number of Circles Covering a Set. American Journal of Mathematics 61(3), 665–671 (1939)

    Article  MATH  MathSciNet  Google Scholar 

  2. Tian, D., Georganas, N.D.: A Coverage-Preserving Node Scheduling Scheme for Large Wireless Sensor Networks. In: Proceedings of ACM Workshop on Wireless Sensor Networks and Applications (WSNA), pp. 32–41 (2002)

    Google Scholar 

  3. Bai, X., Kumar, S., Yun, Z., Xuan, D., Lai, T.H.: Deploying wireless sensors to achieve both coverage and connectivity. In: Proceedings of ACM MobiHoc, pp. 131–142 (2006)

    Google Scholar 

  4. Esteban, C.H., Schmitt, F.: Multi-Stereo 3D Object Reconstruction. In: Proceedings of the first International Symposium on 3D Data Processing Visualization and Transmission (3DPVT), pp. 159–166 (2002)

    Google Scholar 

  5. Crossbow: MCS Cricket Series (MCS410), http://www.xbow.com

  6. Chakrabarty, K., Iyengar, S.S., Qi, H., Cho, E.: Grid Coverage for Surveillance and Target Location in Distributed Sensor Networks. IEEE Transactions on Computers 51(12), 1448–1453 (2002)

    Article  MathSciNet  Google Scholar 

  7. Wang, Y.C., Hu, C.C., Tseng, Y.C.: Efficient Deployment Algorithms for Ensuring Coverage and Connectivity of Wireless Sensor Networks. In: Proceedings of IEEE Wireless Internet Conference (WICON), pp. 114–121 (2005)

    Google Scholar 

  8. Iyengar, R., Kar, K., Banerjee, S.: Low-coordination topologies for redundancy in sensor networks. In: Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing(MobiHoc), pp. 332–342 (2005)

    Google Scholar 

  9. Huang, C.F., Tseng, Y.C.: The Coverage Problem in a Wireless Sensor Network. In: Proceedings of ACM Workshop on Wireless Sensor Networks and Applications (WSNA), pp. 115–121 (2003)

    Google Scholar 

  10. Huang, C.F., Tseng, Y.C., Lo, L.C.: The Coverage Problem in Three-Dimensional Wireless Sensor Networks. In: Proceedings of IEEE GLOBECOM, pp. 3182–3186 (2004)

    Google Scholar 

  11. Yang, S., Dai, F., Cardei, M., Wu, J.: On Connected Multiple Point Coverage in Wireless Sensor Networks. Journal of Wireless Information Networks 13(4), 289–301 (2006)

    Article  Google Scholar 

  12. Hefeeda, M., Bagheri, M.: Randomized k-Coverage Algorithms for Dense Sensor Networks. In: Proceedings of IEEE INFOCOM, pp. 2376–2380 (2007)

    Google Scholar 

  13. Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., Gill, C.: Integrated coverage and connectivity configuration in wireless sensor networks. In: Proceedings of the 1st international conference on Embedded networked sensor systems(SenSys), pp. 28–39 (2003)

    Google Scholar 

  14. Xiaochun, X., Sartaj, S.: Approximation Algorithms for Sensor Deployment. IEEE Transactions on Computers 56(12), 1681–1695 (2007)

    Article  Google Scholar 

  15. Nam, M.Y., Al-Sabbagh, M.Z., Kim, J.E., Yoon, M.K., Lee, C.G., Ha, E.Y.: A Real-time Ubiquitous System for Assisted Living: Combined Scheduling of Sensing and Communication for Real-Time Tracking. IEEE Transactions on Computers (to appear, 2008)

    Google Scholar 

  16. Nam, M.Y., Al-Sabbagh, M.Z., Lee, C.G.: Real-Time Indoor Human/Object Tracking for Inexpensive Technology-Based Assisted Living. In: Proceedings of IEEE Real-Time Systems Symposium (RTSS) (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sotiris E. Nikoletseas Bogdan S. Chlebus David B. Johnson Bhaskar Krishnamachari

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, JE., Yoon, MK., Han, J., Lee, CG. (2008). Sensor Placement for 3-Coverage with Minimum Separation Requirements . In: Nikoletseas, S.E., Chlebus, B.S., Johnson, D.B., Krishnamachari, B. (eds) Distributed Computing in Sensor Systems. DCOSS 2008. Lecture Notes in Computer Science, vol 5067. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69170-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69170-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69169-3

  • Online ISBN: 978-3-540-69170-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics