Skip to main content

Motion Planning for a Six-Legged Lunar Robot

  • Chapter
Algorithmic Foundation of Robotics VII

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 47))

Abstract

This paper studies the motion of a large and highly mobile six-legged lunar vehicle called athlete, developed by the Jet Propulsion Laboratory. This vehicle rolls on wheels when possible, but can use the wheels as feet to walk when necessary. While gaited walking may suffice for most situations, rough and steep terrain requires novel sequences of footsteps and postural adjustments that are specifically adapted to local geometric and physical properties. This paper presents a planner to compute these motions that combines graph searching techniques to generate a sequence of candidate footfalls with probabilistic sample-based planning to generate continuous motions to reach them. The viability of this approach is demonstrated in simulation on several example terrains, even one that requires rappelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akinc, M., Bekris, K.E., Chen, B.Y., Ladd, A.M., Plaku, E., Kavraki, L.E.: In: Int. Symp. Rob. Res., Siena, Italy (2003)

    Google Scholar 

  2. Alami, R., Laumond, J.-P., Siméon, T.: Two manipulation planning algorithms. In: Goldberg, K., Halperin, D., Latombe, J.-C., Wilson, R. (eds.) Alg. Found. Rob., pp. 109–125. A.K. Peters, Wellesley (1995)

    Google Scholar 

  3. Bares, J.E., Wettergreen, D.S.: Dante II: Technical description, results and lessons learned. Int. J. Rob. Res. 18(7), 621–649 (1999)

    Article  Google Scholar 

  4. Bicchi, A., Kumar, V.: Robotic grasping and contact: A review. In: IEEE Int. Conf. Rob. Aut., San Francisco, pp. 348–353 (2000)

    Google Scholar 

  5. Boissonnat, J.-D., Devillers, O., Lazard, S.: Motion planning of legged robots. SIAM J. Computing 30(1), 218–246 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bretl, T.: Motion planning of multi-limbed robots subject to equilibrium constraints: The free-climbing robot problem. Int. J. Rob. Res. 25(4), 317–342 (2006)

    Article  Google Scholar 

  7. Bretl, T., Lall, S.: A fast and adaptive test of static equilibrium for legged robots. In: IEEE Int. Conf. Rob. Aut., Orlando, FL (2006)

    Google Scholar 

  8. Bretl, T., Latombe, J.-C., Rock, S.: Toward autonomous free-climbing robots. In: Int. Symp. Rob. Res., Siena, Italy (2003)

    Google Scholar 

  9. Caillas, C., Hebert, M., Krotkov, E., Kweon, I., Kanade, T.: Methods for identifying footfall positions for a legged robot. In: Int. Work. Int. Rob. Sys., pp. 244–250 (1989)

    Google Scholar 

  10. Chestnutt, J., Kuffner, J., Nishiwaki, K., Kagami, S.: Planning biped navigation strategies in complex environments. In: IEEE Int. Conf. Hum. Rob., Munich, Germany (2003)

    Google Scholar 

  11. Choset, H., Lynch, K., Hutchinson, S., Kanto, G., Burgard, W., Kavraki, L., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  12. Cortés, J., Siméon, T., Laumond, J.-P.: A random loop generator for planning the motions of closed kinematic chains using prm methods. In: IEEE Int. Conf. Rob. Aut., Washington, D.C. (2002)

    Google Scholar 

  13. Eldershaw, C., Yim, M.: Motion planning of legged vehicles in an unstructured environment. In: IEEE Int. Conf. Rob. Aut., Seoul, South Korea (2001)

    Google Scholar 

  14. Estier, T., Crausaz, Y., Merminod, B., Lauria, M., Pguet, R., Siegwart, R.: An innovative space rover with extended climbing abilities. In: Space and Robotics, Albuquerque, NM (2000)

    Google Scholar 

  15. Geraerts, R., Overmars, M.: Clearance based path optimization for motion planning. In: IEEE Int. Conf. Rob. Aut., New Orleans, LA (2004)

    Google Scholar 

  16. Gottschalk, S., Lin, M., Manocha, D.: OBB-tree: A hierarchical structure for rapid interference detection. In: ACM SIGGRAPH, pp. 171–180 (1996)

    Google Scholar 

  17. Han, L., Amato, N.M.: A kinematics-based probabilistic roadmap method for closed chain systems. In: WAFR (2000)

    Google Scholar 

  18. Hauser, K., Bretl, T., Latombe, J.-C.: Non-gaited humanoid locomotion planning. In: Humanoids, Tsukuba, Japan (2005)

    Google Scholar 

  19. Heiken, G.H., Vaniman, D.T., French, B.M.: Lunar Sourcebook: A User’s Guide to the Moon. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  20. Hirose, S., Kunieda, O.: Generalized standard foot trajectory for a quadruped walking vehicle. Int. J. Rob. Res. 10(1), 3–12 (1991)

    Article  Google Scholar 

  21. Hirose, S., Yoneda, K., Tsukagoshi, H.: Titan VII: Quadruped walking and manipulating robot on a steep slope. In: IEEE Int. Conf. Rob. Aut., Albuquerque, NM, pp. 494–500 (1997)

    Google Scholar 

  22. Hsu, D., Latombe, J.-C., Motwani, R.: Path planning in expansive configuration spaces. In: IEEE Int. Conf. Rob. Aut., pp. 2219–2226 (1997)

    Google Scholar 

  23. Iagnemma, K., Genot, F., Dubowsky, S.: Rapid physics-based rough-terrain rover planning with sensor and control uncertainty. In: IEEE Int. Conf. Rob. Aut., Detroit, MI (1999)

    Google Scholar 

  24. Kavraki, L.E., Svetska, P., Latombe, J.-C., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Automat. 12(4), 566–580 (1996)

    Article  Google Scholar 

  25. Koga, Y., Latombe, J.-C.: On multi-arm manipulation planning. In: IEEE Int. Conf. Rob. Aut., San Diego, CA, pp. 945–952 (1994)

    Google Scholar 

  26. Krotkov, E., Simmons, R.: Perception, planning, and control for autonomous walking with the ambler planetary rover. Int. J. Rob. Res. 15, 155–180 (1996)

    Article  Google Scholar 

  27. Kuffner, Jr., J.J.: Autonomous Agents for Real-Time Animation. PhD thesis, Stanford University (1999)

    Google Scholar 

  28. Kuffner Jr., J.J., Nishiwaki, K., Kagami, S., Inaba, M., Inoue, H.: Motion planning for humanoid robots. In: Int. Symp. Rob. Res., Siena, Italy (2003)

    Google Scholar 

  29. Lauria, M., Piguet, Y., Siegwart, R.: Octopus: an autonomous wheeled climbing robot. In: CLAWAR (2002)

    Google Scholar 

  30. LaValle, S.M., Kuffner Jr., J.J.: Randomized kinodynamic planning. Int. J. Rob. Res. 20(5), 379–400 (2001)

    Article  Google Scholar 

  31. Low, K., Bai, S.: Terrain-evaluation-based motion planning for legged locomotion on irregular terrain. Adv. Rob. 17(8), 761–778 (2003)

    Article  Google Scholar 

  32. Mumm, E., Farritor, S., Pirjanian, P., Leger, C., Schenker, P.: Planetary cliff descent using cooperative robots. Autonomous Robots 16, 259–272 (2004)

    Article  Google Scholar 

  33. Nielsen, C.L., Kavraki, L.E.: A two level fuzzy prm for manipulation planning. In: IEEE/RSJ Int. Conf. Int. Rob. Sys., Takamatsu, Japan, pp. 1716–1721 (2000)

    Google Scholar 

  34. Okamura, A., Smaby, N., Cutkosky, M.: An overview of dexterous manipulation. In: IEEE Int. Conf. Rob. Aut., pp. 255–262 (2000)

    Google Scholar 

  35. Pai, D.K., Barman, R.A., Ralph, S.K.: Platonic beasts: Spherically symmetric multilimbed robots. Autonomous Robots 2(4), 191–201 (1995)

    Article  Google Scholar 

  36. Pettré, J., Laumond, J.-P., Siméon, T.: A 2-stages locomotion planner for digital actors. In: Eurographics/SIGGRAPH Symp. Comp. Anim. (2003)

    Google Scholar 

  37. Sahbani, A., Cortés, J., Siméon, T.: A probabilistic algorithm for manipulation planning under continuous grasps and placements. In: IEEE/RSJ Int. Conf. Int. Rob. Sys., Lausanne, Switzerland, pp. 1560–1565 (2002)

    Google Scholar 

  38. Sánchez, G., Latombe, J.-C.: On delaying collision checking in PRM planning: Application to multi-robot coordination. Int. J. of Rob. Res. 21(1), 5–26 (2002)

    Article  Google Scholar 

  39. Schwarzer, F., Saha, M., Latombe, J.-C.: Exact collision checking of robot paths. In: WAFR, Nice, France (December 2002)

    Google Scholar 

  40. Shapiro, A., Rimon, E.: PCG: A foothold selection algorithm for spider robot locomotion in 2d tunnels. In: IEEE Int. Conf. Rob. Aut., Taipei, Taiwan, pp. 2966–2972 (2003)

    Google Scholar 

  41. Singh, S., Simmons, R., Smith, T., Stentz, A.T., Verma, V., Yahja, A., Schwehr, K.: Recent progress in local and global traversability for planetary rovers. In: IEEE Int. Conf. Rob. Aut. (2000)

    Google Scholar 

  42. Song, G., Miller, S., Amato, N.M.: Customizing PRM roadmaps at query time. In: IEEE Int. Conf. Rob. Aut., Seoul, Korea, pp. 1500–1505 (2001)

    Google Scholar 

  43. Song, S.-M., Waldron, K.J.: Machines that walk: The adaptive suspension vehicle. The MIT Press, Cambridge (1989)

    Google Scholar 

  44. Vougioukas, S.G.: Optimization of robot paths computed by randomized planners. In: IEEE Int. Conf. Rob. Aut., Barcelona, Spain (2005)

    Google Scholar 

  45. Wang, L., Chen, C.: A combined optimization method for solving the inverse kinematics problem of mechanical manipulators. IEEE Trans. Robot. Automat. 7(4), 489–499 (1991)

    Article  Google Scholar 

  46. Wettergreen, D., Thorpe, C., Whittaker, W.: Exploring mount erebus by walking robot. Robotics and Autonomous Systems 11, 171–185 (1993)

    Article  Google Scholar 

  47. Yakey, J.H., LaValle, S.M., Kavraki, L.E.: Randomized path planning for linkages with closed kinematic chains. IEEE Trans. Robot. Automat. 17(6), 951–958 (2001)

    Article  Google Scholar 

  48. Yoneda, K., Ito, F., Ota, Y., Hirose, S.: Steep slope locomotion and manipulation mechanism with minimum degrees of freedom. In: IEEE/RSJ Int. Conf. Int. Rob. Sys., pp. 1897–1901 (1999)

    Google Scholar 

  49. Zheng, Y.F., Shen, J.: Gait synthesis for the SD-2 biped robot to climb sloping surface. IEEE Trans. Robot. Automat. 6(1), 86–96 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Srinivas Akella Nancy M. Amato Wesley H. Huang Bud Mishra

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hauser, K., Bretl, T., Latombe, JC., Wilcox, B. (2008). Motion Planning for a Six-Legged Lunar Robot. In: Akella, S., Amato, N.M., Huang, W.H., Mishra, B. (eds) Algorithmic Foundation of Robotics VII. Springer Tracts in Advanced Robotics, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68405-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68405-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68404-6

  • Online ISBN: 978-3-540-68405-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics