Skip to main content

Quantitative Analysis of Nearest-Neighbors Search in High-Dimensional Sampling-Based Motion Planning

  • Chapter

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 47))

Abstract

We quantitatively analyze the performance of exact and approximate nearest-neighbors algorithms on increasingly high-dimensional problems in the context of sampling-based motion planning. We study the impact of the dimension, number of samples, distance metrics, and sampling schemes on the efficiency and accuracy of nearest-neighbors algorithms. Efficiency measures computation time and accuracy indicates similarity between exact and approximate nearest neighbors.

Our analysis indicates that after a critical dimension, which varies between 15 and 30, exact nearest-neighbors algorithms examine almost all the samples. As a result, exact nearest-neighbors algorithms become impractical for sampling-based motion planners when a considerably large number of samples needs to be generated. The impracticality of exact nearest-neighbors algorithms motivates the use of approximate algorithms, which trade off accuracy for efficiency. We propose a simple algorithm, termed Distance-based Projection onto Euclidean Space (DPES), which computes approximate nearest neighbors by using a distance-based projection of high-dimensional metric spaces onto low-dimensional Euclidean spaces. Our results indicate DPES achieves high efficiency and only a negligible loss in accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amato, N.M., Bayazit, B., Dale, L., Jones, C., Vallejo, D.: OBPRM: An obstacle-based PRM for 3d workspaces. In: Agarwal, P., Kavraki, L.E., Mason, M. (eds.) Robotics: The Algorithmic Perspective, pp. 156–168. AK Peters (1998)

    Google Scholar 

  2. Arya, S., Mount, D.M., Nathan, S.: An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. Journal of the ACM 45(6), 891–923 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Atramentov, A., LaValle, S.M.: Efficient nearest neighbor searching for motion planning. In: IEEE International Conference on Robotics and Automation, Washington, DC, pp. 632–637 (2002)

    Google Scholar 

  4. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor” meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Boor, V., Overmars, M.H., van der Stappen, A.F.: The gaussian sampling strategy for probabilistic roadmap planners. In: IEEE International Conference on Robotics and Automation, Detroit, MI, pp. 1018–1023 (1999)

    Google Scholar 

  6. Borodin, A., Ostrovsky, R., Rabani, Y.: Lower bounds for high dimensional nearest neighbor search and related problems. In: ACM Symposium on Theory of Computing, Atlanta, GA, pp. 312–321 (1999)

    Google Scholar 

  7. Brin, S.: Near neighbor search in large metric spaces. In: International Conference on Very Large Data Bases, San Francisco, California, pp. 574–584 (1995)

    Google Scholar 

  8. Bullo, F., Murray, R.M.: Proportional derivative (PD) control on the Euclidean group. In: European Control Conference, Rome, Italy, pp. 1091–1097 (1995)

    Google Scholar 

  9. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  10. Cui, B., Shen, H.T., Shen, J., Tan, K.-L.: Exploring bit-difference for approximate knn search in high-dimensional databases. In: Australasian Database Conference, Newcastle, Australia, pp. 165–174 (2005)

    Google Scholar 

  11. Gaede, V., Günther, O.: Multidimensional access methods. ACM Computing Surveys 30(2), 170–231 (1998)

    Article  Google Scholar 

  12. Hinneburg, A., Aggarwal, C.C., Keim, D.A.: What is the nearest neighbor in high dimensional spaces? In: International Conference on Very Large Data Bases, Cairo, Egypt, pp. 506–515 (2000)

    Google Scholar 

  13. Hsu, D., Jiang, T., Reif, J., Sun, Z.: The bridge test for sampling narrow passages with probabilistic roadmap planners. In: IEEE International Conference on Robotics and Automation, Taipei, Taiwan, pp. 4420–4442 (2003)

    Google Scholar 

  14. Hsu, D., Kindel, R., Latombe, J.-C., Rock, S.: Randomized kinodynamic motion planning with moving obstacles. International Journal of Robotics Research 21(3), 233–255 (2002)

    Article  Google Scholar 

  15. Indyk, P.: Nearest neighbors in high-dimensional spaces. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, pp. 877–892. CRC Press, Boca Raton (2004)

    Google Scholar 

  16. Indyk, P., Matoušek, J.: Low-distortion embeddings of finite metric spaces. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, pp. 177–196. CRC Press, Boca Raton (2004)

    Google Scholar 

  17. Kavraki, L.E., Švestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation 12(4), 566–580 (1996)

    Article  Google Scholar 

  18. Korn, F., Pagel, B.-U., Faloutsos, C.: On the ‘dimensionality curse’ and the ‘self-similarity blessing’. IEEE Transactions on Knowledge and Data Engineering 13(1), 96–111 (2001)

    Article  Google Scholar 

  19. Kushilevitz, E., Ostrovsky, R., Rabani, Y.: Efficient search for approximate nearest neighbor in high dimensional spaces. SIAM Journal of Computing 30(2), 457–474 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. International Journal of Robotics Research 20(5), 378–400 (2001)

    Article  Google Scholar 

  21. Liu, T., Moore, A.W., Gray, A., Yang, K.: An investigation of practical approximate nearest neighbor algorithms. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, pp. 825–832. MIT Press, Cambridge (2005)

    Google Scholar 

  22. Plaku, E., Bekris, K.E., Chen, B.Y., Ladd, A.M., Kavraki, L.E.: Sampling-based roadmap of trees for parallel motion planning. IEEE Transactions on Robotics 21(4), 597–608 (2005)

    Article  Google Scholar 

  23. Weber, R., Schek, H.-J., Blott, S.: A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: International Conference on Very Large Data Bases, pp. 194–205. New York (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Srinivas Akella Nancy M. Amato Wesley H. Huang Bud Mishra

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plaku, E., Kavraki, L.E. (2008). Quantitative Analysis of Nearest-Neighbors Search in High-Dimensional Sampling-Based Motion Planning. In: Akella, S., Amato, N.M., Huang, W.H., Mishra, B. (eds) Algorithmic Foundation of Robotics VII. Springer Tracts in Advanced Robotics, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68405-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68405-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68404-6

  • Online ISBN: 978-3-540-68405-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics