Skip to main content

Semiconductor mode-locked lasers as pulse sources for high bit rate data transmission

  • Chapter
Book cover Ultrahigh-Speed Optical Transmission Technology

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 3))

Abstract

Semiconductor mode-locked lasers are evaluated as pulse sources for high bit rate data transmission. This chapter describes the requirements of OTDM sources for high bit rate data transmission, compares various OTDM source technologies, describes three semiconductor mode-locked laser cavity designs, explains the impact of timing jitter and amplitude noise on OTDM performance, illustrates how to characterize noise of OTDM sources using rf and optical techniques, shows how to interpret the noise measurements, and finally discusses semiconductor mode-locked laser cavity optimizations that can achieve low noise performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Ludwig, S. Diez, A. Ehrhardt, L. Küller, W. Pieper, and H. G. Weber, “A tunable femtosecond modelocked semiconductor laser for applications in OTDM-systems,” IEICE Trans. Electron., E81-C, 140–145 (1998), IEICE transactions on electronics.

    Google Scholar 

  2. H. Yokoyama, “Highly stabilized mode-locked semiconductor diode lasers,” Rev. Laser Eng., 27, 750–755, 1999.

    Google Scholar 

  3. H. Yokoyama, “Highly reliable mode-locked semiconductor lasers,” IEICE Trans. Electron., E85-C(1), 27–36 (January 2002).

    Google Scholar 

  4. L. A. Jiang, M. E. Grein, E. P. Ippen, C. McNeilage, J. Searls, and H. Yokoyama, “Quantum-limited noise performance of a modelocked laser diode,” Opt. Lett., 27(1), 49–51 (2002).

    Article  ADS  Google Scholar 

  5. C.M. DePriest, T. Yilmaz, A. Braun, J. H. Abeles, and P. J. Delfyett Jr., “High-quality photonic sampling streams from a semiconductor diode ring laser,” IEEE J. Quant. Electron., 38(4), 380–389 (2002).

    Article  ADS  Google Scholar 

  6. U. Feiste, R. Ludwig, C. Schubert, J. Berger, C. Schmidt, H. G. Weber, B. Schmauss, A. Munk, B. Buchold, D. Briggmann, F. Kueppers, and F. Rumpf, “160 Gbit/s transmission over 116 km field-installed fibre using 160 Gbit/s OTDM and 40 Gbit/s ETDM,” Electron. Lett., 37(7), 443–445 (March 2001).

    Article  Google Scholar 

  7. M. Nakazawa, T. Yamamoto, and K. R. Tamura, “Ultrahigh-speed OTDM transmission beyond 1 Ter-bit-per-second using a femtosecond pulse train,” IEICE Trans. Electron., E85-C(1), 117–125 (2002).

    Google Scholar 

  8. J. Zhang, M. Yao, X. Chen, L. Xu, M. Chen, and Y. Gao, “Bit error rate analysis of OTDM system based on moment generation function,” J. Lightwave Technol., 18(11, pp. 1513–1518 (November 2000).

    Article  ADS  Google Scholar 

  9. K. S. Jepsen, H. N. Poulsen, A. T. Clausen, and K. E. Stubkjer, “Investigation of cascadability of add-drop multiplexers in OTDM systems,” in Proc. ECOC’98, 1998, vol. 1.

    Google Scholar 

  10. M. L. Nielsen, B.-E. Olsson, and D. J. Blumenthal, “Pulse extinction ratio improvement using SPM in an SOA for OTDM system applications,” IEEE Photon. Technol. Lett., 14(2), 245–247 (2002).

    Article  ADS  Google Scholar 

  11. E. Hashimoto, A. Takada, and Y. Katagiri, “High-frequency synchronized signal generation using semiconductor lasers,” IEEE Transactions on Microwave Theory and Techniques, 47(7), 1206–1218 (1999).

    Article  ADS  Google Scholar 

  12. I. Ogura, H. Kurita, T. Sasaki, and H. Yokoyama, “Precise operation-frequency control of monolithic mode-locked laser diodes for high-speed optical communication and all-optical signal processing,” Opt. Quant. Electron., 33, 709–725 (2001).

    Article  Google Scholar 

  13. PriTel, Naperville, IL, USA, Datasheet for UOC series Ultrafast Optical Clocks.

    Google Scholar 

  14. Calmar Optcom, Sunnyvale, CA, USA, Datasheet for PSL series picosecond lasers, 2001.

    Google Scholar 

  15. GigaTera, Lerzenstrasse 16, CH-8953 Dietikron, Switzerland, Datasheet for ERGO pulse generating laser, September 2002.

    Google Scholar 

  16. Emmanuel Desurvire, Erbium-doped fiber amplifiers: principles and applications (John Wiley and Sons, New York, 1994).

    Google Scholar 

  17. A. D. Ellis, R. J. Manning, I. D. Phillips, and D. Nesset, “1.6 ps pulse generation at 40 GHz in phaselocked ring laser incorporating highly nonlinear fibre for application to 160 Gbit/s OTDM networks,” Electron. Lett., 8(35), 645–646 (1999).

    Article  Google Scholar 

  18. J. Li, A. Andrekson, and B. Bakhshi, “Direct generation of subpicosecond chirp-free pulses at 10 GHz from a nonpolarization maintaining actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett., 12(9), 1150–1152 (2000).

    Article  ADS  Google Scholar 

  19. B. Bakhshi and P. A. Andrekson, “40 GHz actively modelocked polarisation-maintaining erbium fibre ring laser,” Electron. Lett., 36(5), 411–413 (2000).

    Article  Google Scholar 

  20. T. F. Carruthers and I. N. Duling III, “10-GHz, 1.3 ps erbium fiber laser employing soliton pulse shortening,” Opt. Lett., 21(23), 1927–1929 (1996).

    Article  ADS  Google Scholar 

  21. M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett., 12(12), 1613–1615 (2000).

    Article  ADS  Google Scholar 

  22. P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quant. Electron., 27(10), 2347–2355 (1991).

    Article  ADS  Google Scholar 

  23. T. E. Murphy, “10-GHz 1.3-ps pulse generation using chirped soliton compression in a Raman gain medium,” IEEE Photon Technol. Lett., 14(10), 1424–1426, (2002).

    Article  MathSciNet  ADS  Google Scholar 

  24. D. Lee, H. Yoon, and N. Park, “Extension of dispersion decreasing fiber — pulse shaping method for the optical time division multiplexing system source applications,” in CLEO Pacific Rim’99, 1999.

    Google Scholar 

  25. M. J. Guy, S. V. Chernikov, J. R. Taylor, D. G. Moodie, and R. Kashyap, “200 fs soliton pulse generation at 10 GHz through nonlinear compression of transform-limited pulses from an electroabsorption modulator,” Electron. Lett., 31(9), 740–741 (1995).

    Article  ADS  Google Scholar 

  26. M. J. Guy, S. V. Chernikov, J. R. Taylor, D. G. Moodie, and R. Kashyap, “1.2 ps pulses at low base repetition rates for 100 Gbit/s per channel optical communication networks,” Electron. Lett, 31(25), 2190–2191 (1995).

    Article  Google Scholar 

  27. S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Comb-like dispersion-profiled fibre for soliton pulse-train generation,” Opt. Lett., 19(8), 539–541 (1994).

    Article  ADS  Google Scholar 

  28. M. Guy, S. Chernikov, and R. Taylor, “Electroabsorption modulators for high speed ultrashort pulse generation and processing,” IEICE Trans. Electron., E81-C(2), 169–174 (1998).

    Google Scholar 

  29. Y. Matsui, M. D. Pelusi, and A. Suzuki, “Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression technique,” IEEE Photon. Technol. Lett., 11(10), 1217–1219 (1999).

    Article  ADS  Google Scholar 

  30. H. Ohta, S. Nogiwa, and H. Chiba, “Generation of low timing jitter, sub-picosecond optical pulses using a gain-switched DFB-LD with CW light injection and a nonlinear optical loop mirror,” IEICE Trans. Electron., E81-C(2), 166–168 (1998).

    Google Scholar 

  31. K. A. Wiliams, I. H. White, D. Burns, and W. Sibbett, “Jitter reduction through feedback for picosecond pulsed InGaAsP lasers,” IEEE J. Quant. Electron., 32(11), 1988–1994 (1996).

    Article  ADS  Google Scholar 

  32. M. Jinno, “Correlated and uncorrelated timing jitter in gain-switched laser diodes,” IEEE Photon. Technol. Lett., 5(10), 1140–1143 (1993).

    Article  ADS  Google Scholar 

  33. Y. Arakawa, T. Sogawa, M. Nishioka, M. Tanaka, and H. Sakaki, “Picosecond pulse generation (< 1.8 ps) in a quantum well laser by a gain switching method,” Appl. Phys. Lett., 51(17), 1295–1297(1987).

    Article  ADS  Google Scholar 

  34. P. T. Ho, L. A. Glasser, E. P. Ippen, and H. A. Haus, “Picosecond pulse generation with a cw GaAlAs laser diode” Appl. Phys. Lett., 33(3), 241–242 (1978).

    Article  ADS  Google Scholar 

  35. R. Ludwig and A. Ehrhardt, “Turn-key-ready wavelength-, repetition rate-and pulsewidth-tunable femtosecond hybrid modelocked semiconductor laser,” Electron. Lett., 31(14), 1165–1167 (1995).

    Article  Google Scholar 

  36. Y. Hashimoto, H. Yamada, R. Kuribayashi, and H. Yokoyama, “40-GHz tunable optical pulse generation from a highly-stable external-cavity mode-locked semiconductor laser module,” in OFC’02, OSA, 2002.

    Google Scholar 

  37. K. Sato, A. Hirano, N. Shimizu, and I. Kotaka, “High-frequency and low-jitter optical pulse generation using semiconductor mode-locked lasers,” IEEE Transactions on Microwave Theory and Techniques, 47(7), 1251–1256 (1999).

    Article  ADS  Google Scholar 

  38. K. Sato, I. Kotaka, Y. Kondo, and M. Yamamoto, “Actively mode-locked strained-InGaAsP multiquantum-well lasers integrated with electroabsorption modulators and distributed Bragg reflectors” IEEE J. Select. Topics Quant. Electron., 2(3), 557–565 (1996).

    Article  Google Scholar 

  39. K. Sato, K. Wakita, I. Kotaka, Y. Kondo, M. Yamamoto, and A. Takada, “Monolithic strained-InGaAsP multiple-quantum-well lasers with integrated electroabsorption modulators for active mode locking,” Appl. Phys. Lett., 65(1), 1–3 (1994).

    Article  ADS  Google Scholar 

  40. R. S. Tucker, U. Koren, G. Raybon, C. A. Burrus, B. I. Miller, T. L. Koch, G. Eisenstein, and A. Shahar, “40 Ghz active mode-locking in a 1.5 µm monolithic extended-cavity laser,” Electron. Lett., 25(10), 621–622 (1989).

    Article  Google Scholar 

  41. M. C. Wu, Y. K. Chen, T. Tanbun-Ek, R. A. Logan, M. A. Chin, and G. Raybon, “Transform-limited 1.4 ps optical pulses from a monolithic colliding-pulse mode-locked quantum well laser,” Appl. Phys. Lett., 57(8), 759–761 (1990).

    Article  ADS  Google Scholar 

  42. Y. K. Chen and M. C. Wu, “Monolithic colliding-pulse mode-locked quantum-well lasers,” IEEE J. Quant. Electron., 28(10), 2176–2185 (1992).

    Article  ADS  Google Scholar 

  43. P. B. Hansen, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. A. Newkirk, M.-D. Chien, B. Tell, and C. A. Burrus, “Monolithic semiconductor soliton transmitter,” J. Lightwave Technol., 13(2), 297–301 (1995).

    Article  ADS  Google Scholar 

  44. P. B. Hansen, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. Chien, C. A. Burrus, and R. C. Alferness, “5.5-mm long InGaAsP monolithic extended-cavity laser with an integrated bragg-reflector for active mode-locking,” IEEE Photon. Technol. Lett., 4(3), 215–217 (1992).

    Article  ADS  Google Scholar 

  45. P. A. Morton, J. E. Bowers, L. A. Koszi, M. Soler, J. Lopata, and D. P. Wilt, “Monolithic hybrid mode-locked 1.3 µm semiconductor lasers,” Appl. Phys. Lett, 56(2), 111–113 (1990).

    Article  ADS  Google Scholar 

  46. D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, “Short pulse generation using multisegment mode-locked semiconductor lasers,” IEEE J. Quant. Electron., 28(10), 2186–2202 (1992).

    Article  ADS  Google Scholar 

  47. M. J. Guy, S. V. Chernikov, and J. R. Taylor, “A duration-tunable, multiwavelength pulse source for OTDM and WDM communications,” IEEE Photon. Technol. Lett., 9(7), 1017–1019(1997).

    Article  ADS  Google Scholar 

  48. M. D. Pelusi, Y. Matsui, and A. Suzuki, “Frequency tunable femtosecond pulse generation from an electroabsorption modulator by enhanced higher order soliton compression in dispersion decreasing fibre,” Electron. Lett., 35(9), 734–735 (1999).

    Article  Google Scholar 

  49. P. C. Reeves-Hall and J. R. Taylor, “Wavelength and duration tunable subpicosecond source using adiabatic Raman compression,” Electron. Lett., 37(7), 417–418 (2001).

    Article  Google Scholar 

  50. E. Yoshida and Nakazawa M., “A 40-GHz 0.9-ps regeneratively mode-locked fiber laser with a tuning range of 1530–1560,” IEEE Photon. Technol. Lett., 11(12), 1587–1589 (December 1999).

    Article  ADS  Google Scholar 

  51. E. Yoshida and Nakazawa M., “Measurement of the timing jitter and pulse energy fluctuation of a PLL regeneratively mode-locked fiber laser,” IEEE Photon. Technol. Lett., 11(5), 548–550 (May 1999).

    Article  ADS  Google Scholar 

  52. E. Yoshida and Nakazawa M., “Wavelength tunable 1.0 ps pulse generation in 1.530–1.555 µm region from PLL regeneratively modelocked fibre laser,” Electron. Lett., 34(18), 1753–1754 (1998).

    Article  Google Scholar 

  53. A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986).

    Google Scholar 

  54. H. Yokoyama, T. Shimizu, T. Ono, and Y. Yano, “Synchronous injection locking operation of monolithic mode-locked diode lasers,” Opt. Rev., 2, 85–88 (1995).

    Article  Google Scholar 

  55. I. Ogura, T. Sasaki, H. Yamada, and H. Yokoyama, “Precise sdh frequency operation of monolithic laser diodes with frequency tuning function,” Electron. Lett., 35(15), 1275–1277 (1999).

    Article  Google Scholar 

  56. K. Sato, I. Hiroyuki, I. Kotaka, K. Yasuhiro, and M. Yamamoto, “Frequency range extension of actively mode-locked lasers integrated with electroabsorption modulators using chirped gratings,” IEEE J. Select. Topics Quant. Electron., 3(2), 250–255 (1997).

    Article  Google Scholar 

  57. J. E. Bowers, P. A. Morton, A. Mar, and S. W. Corzine, “Actively mode-locked semiconductor lasers,” IEEE J. Quant. Electron., 25(6), 1426–1439 (1989).

    Article  ADS  Google Scholar 

  58. C. M. DePriest, T. Yilmaz, P. J. Delfyett Jr., S. Etemad, A. Braun, and J. H. Abeles, “Ultralow noise and supermode suppression in an actively mode-locked external-cavity semiconductor diode ring,” Opt. Lett., 27(9), 719–721 (2002).

    Article  ADS  Google Scholar 

  59. G. T. Harvey and L. F. Mollenauer, “Harmonically mode-locked fiber laser with an internal Fabry-Perot stabilizer for soliton transmission,” Opt. Lett., 18(2), 107–109 (1993).

    Article  ADS  Google Scholar 

  60. K. K. Gupta, N. Onodera, and M. Hyodo, “Technique to generate equal amplitude, higher-order optical pulses in rational harmonically modelocked fibre ring lasers,” Electron. Lett., 37(15), 948–950 (2001).

    Article  Google Scholar 

  61. T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling III, “Phase noise measurements of ultrastable 10 GHz harmonically modelocked fibre laser,” Electron. Lett., 35(9), 720–721 (1999).

    Article  Google Scholar 

  62. T. Yilmaz, C. M. DePriest, and P. J. Delfyett Jr., “Complete noise characterisation of external cavity semiconductor laser hybridly modelocked at 10 GHz,” Electron. Lett., 37(22), 1338–1339 (2001).

    Article  Google Scholar 

  63. T. Yamamoto, L. K. Oxenlowe, C. Schmidt, C. Schubert, E. Hilliger, U. Feiste, J. Berger, R. Ludwig, and H. G. Weber, “Clock recovery from 160 Gbit/s data signals using phase-locked loop with interferometric optical switch baseed on semiconductor optical amplifier,” Electron. Lett., 37(8), 509–510 (2001).

    Article  Google Scholar 

  64. D. T. L. Tong, K.-L. Deng, B. Mikkelsen, G. Raybon, K. F. Dreyer, and J. E. Johnson, “160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop,” Electron. Lett., 36(23), 1951–1952 (2000).

    Article  Google Scholar 

  65. D. J. Derickson, A. Mar, and J. E. Bowers, “Residual and absolute timing jitter in actively mode-locked semiconductor lasers,” Electron. Lett., 26(24), 2026–2028 (November 1990).

    Article  Google Scholar 

  66. W. Ng, R. Stephens, D. Persechini, and K. V. Reddy, “Ultra-low jitter modelocking of er-fibre laser at 10 GHz and its application in photonic sampling for analogue-to-digital conversion,” Electron Lett., 37, 113–115 (2001).

    Article  Google Scholar 

  67. F. Rana, H. L. T. Lee, M. E. Grein, L. A. Jiang, and R. J. Ram, “Characterization of the noise and correlations in harmonically mode-locked lasers,” to be published in JOS A B.

    Google Scholar 

  68. L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits (John Wiley and Sons, New York, 1995).

    Google Scholar 

  69. D. A. Leep and D. A. Holm, “Spectral measurement of timing jitter in gain-switched semiconductor lasers,” Appl. Phys. Lett., 60(20), 2451–2453 (1992).

    Article  ADS  Google Scholar 

  70. M. C. Gross, M. Hanna, K. M. Patel, and S. E. Ralph, “Spectral method for the simultaneous determination of uncorrelated and correlated amplitude and timing jitter,” Appl. Phys. Lett., 80(20), 3694–3696 (2002).

    Article  ADS  Google Scholar 

  71. D. von der Linde, “Characterization of noise in continuously operating mode-locked lasers,” Appl. Phys. B, 39, 201–217 (1986).

    Article  ADS  Google Scholar 

  72. Ursula Keller, Kathryn D. Li, Mark Rodwell, and David M. Bloom, “Noise characterization of femtosecond fiber raman soliton lasers,” IEEE Journal of Quantum Electronics, 25(3), 280–288 (March 1989).

    Article  ADS  Google Scholar 

  73. Blake Peterson, “Spectrum analysis, application note 150,” Tech. Rep., Agilent Technologies, 1989.

    Google Scholar 

  74. L. A. Jiang, M. E. Grein, S. T. Wong, H. A. Haus, and E. P. Ippen, “Measuring timing jitter with optical cross-correlations,” submitted to IEEE J. Quant. Electron.

    Google Scholar 

  75. S. A. Crooker, F. D. Betz, J. Levy, and D. D. Awschalom, “Femtosecond synchronization of two passively mode-locked Ti:sapphire lasers,” Rev. Sci. Instrum., 67(6), 2068–2071 (June 1996).

    Article  ADS  Google Scholar 

  76. L. A. Jiang, Ultralow-noise modelocked lasers, Ph.D. thesis, MIT, 2002.

    Google Scholar 

  77. M. E. Grein, L. A. Jiang, Y. Chen, H. A. Haus, and E. P. Ippen, “Timing restoration dynamics in an actively mode-locked fiber ring laser,” Opt. Lett., 24(23), 1687–1689 (1999).

    Article  ADS  Google Scholar 

  78. L. A. Jiang, K. S. Abedin, M. E. Grein, and E. P. Ippen, “Retiming dynamics of a mode-locked semiconductor laser,” Electron. Lett., 38(22), 1446–1447 (2002).

    Article  Google Scholar 

  79. L. A. Jiang, M. E. Grein, and E. P. Ippen, “Region of validity for residual phase noise measurements of actively modelocked lasers,” submitted to Electron. Lett.

    Google Scholar 

  80. H. Shi, D. Cohen, J. Barton, M. Majewski, L. A. Coldren, M. C. Larson, and G. A. Fish, “Relative intensity noise measurements of a widely tunable sampled-grating DBR laser,” IEEE Photon. Technol. Lett., 14(6), 759–761 (2002).

    Article  ADS  Google Scholar 

  81. R. P. Scott, C. Langrock, and B. H. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE. J. Select. Topics Quant. Electron., 7(4), 641–655 (2001).

    Article  Google Scholar 

  82. M. E. Grein, H. A. Haus, L. A. Jiang, and E. P. Ippen, “Action on pulse position and momentum using dispersion and phase modulation,” Opt. Express, 8(12), 664–669 (2001).

    Article  ADS  Google Scholar 

  83. L. A. Jiang, M. E. Grein, H. A. Haus, E. P. Ippen, and H. Yokoyama, “Timing jitter eater for optical pulse trains,” Opt. Lett., 28(2), 78–80, 2003.

    Article  ADS  Google Scholar 

  84. L. Mollenauer and C. Xu, “Time-lens timing-jitter compensator in ultra-long haul dwdm dispersion managed soliton transmissions,” in CLEO’02 Postdeadline Papers, 2002.

    Google Scholar 

  85. Thomas R. Clark Irl N. Duling III, Robert P. Moeller, “Active filtering of the amplitude noise of a mode-locked fiber laser,” in Conference on Lasers and Electro-Optics, San Francisco, California, USA, May 2000, OSA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media Inc.

About this chapter

Cite this chapter

Jiang, L.A., Ippen, E.P., Yokoyama, H. (2005). Semiconductor mode-locked lasers as pulse sources for high bit rate data transmission. In: Weber, HG., Nakazawa, M. (eds) Ultrahigh-Speed Optical Transmission Technology. Optical and Fiber Communications Reports, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68005-5_2

Download citation

Publish with us

Policies and ethics