Skip to main content

4 × 4 Transfer Matrix T p for Dielectric Helical Films

  • Chapter
  • First Online:
  • 407 Accesses

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 209))

Abstract

Dielectric helical thin films (DHTF’s) are described by a homogeneous rotation of an arbitrarily oriented symmetric dielectric function tensor ɛ assuming that all other linear response dyadics are zero, and that the permeability tensor μ0μ has its scalar vacuum value μ0 [1, 2, 3, 4, 5, 6, 7]. Such material properties are well-known from chiral liquid crystals [8], and which require ellipsometry for appropriate optical characterization [9, 10]. A new class of designed matter is about to emerge upon sculpturing solid-state materials in thin film form. Such designs involve physical deposition techniques in three-dimensional growth regimes, where, depending on growth parameters and appropriate substrate rotation, “zick-zack” pattern, “S”-shapes or helices can be deposited [11, 12, 13, 14]. Design dimensions can be well within the nanometer region, providing interesting grounds for new applications such as micro-filters, micro-antenna arrays, micro-springboards, or “frozen” chiral liquid crystals for optical filters. Crucial for design is the choice of the right dimensions, because electrical and optical properties will depend on confinement effects leading to form birefringence. Due to the complexity of such films, optical characterization is a challenge. The generalized ellipsometry approach allows for nondestructive characterization of helical dielectric materials [15] . The mathematical description of the transfer matrix Tp for dielectric helical films is therefore included here.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Schubert, M. 4 × 4 Transfer Matrix T p for Dielectric Helical Films . In: Infrared Ellipsometry on Semiconductor Layer Structures. Springer Tracts in Modern Physics, vol 209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44701-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44701-6_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23249-0

  • Online ISBN: 978-3-540-44701-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics