Skip to main content

Class-Numbers of Complex Quadratic Fields

  • Conference paper

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 320))

Abstract

Let E be an elliptic curve

$$ y^2 = 4x^3 - g_2 x - g_3 ,\Delta = g_2^3 - 27g_3^2 \ne 0, $$

in Weierstrass normal form. The curve may be parametrized by the Weierstrass ℘-function, x = ℘(z), y = ℘′(z). The function ℘(z) is a doubly periodic function whose periods form a lattice

$$ \Lambda = \{ \omega _1 ,\omega _2 \} = \{ a\omega _1 + b\omega _2 |a,b \in \mathbb{Z}\} $$

where ω12 ∉ ℝ and for convenience we assume that ω1 and ω2 are so ordered that Im(ω12) > 0. We then have the relations

$$ g_2 = 60\sum\limits_\omega {'\omega ^{ - 4} } ,g_3 = 140\sum\limits_\omega {'\omega ^{ - 6} } , $$
(1)

where the summations are over all ω ∈ Λ other than ω = 0, and

$$ \wp (z) = \frac{1} {{z^2 }} + \frac{{g_2 }} {{20}}z^2 + \frac{{g_3 }} {{28}}z^4 + \frac{{g_2^2 }} {{1200}}z^6 + .... $$
(2)

.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. J. BIRCH: Diophantine analysis and modular functions, in Algebraic Geometry, Oxford (1969), 35–42.

    Google Scholar 

  2. _____: Weber’s class invarients, Mathematika 16 (1969), 283–294.

    Article  MATH  MathSciNet  Google Scholar 

  3. MAX DEURING: Imaginäre quadratische Zahlkörper mit der Klassenzahl Eins, Invent. Math., 5 (1968), 169–179.

    Article  MATH  MathSciNet  Google Scholar 

  4. KURT HEEGNER: Diophantische Analysis und Modulfunktionen, Math. Z., 56 (1952), 227–253.

    Article  MATH  MathSciNet  Google Scholar 

  5. H. M. STARK: On the “gap” in a theorem of Heegner, J. Number Theory 1 (1969), 16–27.

    Article  MATH  MathSciNet  Google Scholar 

  6. _____: Class-number problems in quadratic fields, in Proc. of the International Congress in Nice 1970, Vol. 1, 511–518.

    Google Scholar 

  7. _____: Values of L-functions at s = 1 (I). L-functions for quadratic forms, Advances in Math. 7 (1971), 301–343.

    Article  MATH  MathSciNet  Google Scholar 

  8. H. P. F. SWINNERTON-DYER: Applications of algebraic geometry to number theory, in Proc. Symposia in Pure Mathematics vol. 20, Amer. Math. Soc., Providence, 1971, 1–52.

    Google Scholar 

  9. H. WEBER: Lehrbuch der Algebra, vol. 3, 3rd ed., Chelsea, New York (1961) (reprint of the 1908 edition).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stark, H.M. (1973). Class-Numbers of Complex Quadratic Fields. In: Kuijk, W. (eds) Modular Functions of One Variable I. Lecture Notes in Mathematics, vol 320. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38509-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38509-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-06219-6

  • Online ISBN: 978-3-540-38509-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics