Skip to main content

Part of the book series: NanoScience and Technology ((NANO))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Huff, A distributed MEMS processing environment, The MEMS Exchange: A Distributed MEMS Processing Environment. Michael Huff, Corporation for National Research Initiatives Commercialization of Microsystems, MST 1998

    Google Scholar 

  2. B. Bhushan, CRC Handbook of Micro/nanotribology, 2nd edn, 1999.

    Google Scholar 

  3. Courtesy of Sandia National Laboratories.

    Google Scholar 

  4. B. Stark, MEMS Reliability assurance guidelines for space applications, Jet Propulsion Laboratory, NASA, JPL Publication 99-1, 1999.

    Google Scholar 

  5. A. White, A review of some current research in microelectromechanical systems (MEMS) with defence applications, Weapons systems division aeronautical and maritime research laboratory, DSTO, 2000.

    Google Scholar 

  6. Y. Blanter, Nano-electromechanical systems (NEMS), Work sponsored by FOM (o.a. Physics for Technology), NanoNed and by an EU project (CANEL), T.U. Delft, Nederlands.

    Google Scholar 

  7. P. Sharke, Eye on the future: Nanotechnology: hybrid NEMS, Mechanical Engineering magazine online, ASME, Feb 2001.

    Google Scholar 

  8. M.W. van Spengen, MEMS Reliability stiction, charging and RF MEMS, Ph.D dissertation, IMEC-K.U. Leuven, 2005

    Google Scholar 

  9. J.W. Judy, Microelectromechanical systems (MEMS): fabrication, design and applications, Smart Mater. Struct. 10, 2001, pp. 1115–1134

    Article  ADS  Google Scholar 

  10. J.A. Walraven, Failure mechanisms in MEMS, ITC Intern. Test Conf. 33.1, 2003, 828

    Google Scholar 

  11. M.W. van Spengen, MEMS reliability from a failure mechanisms perspective, Microelectron. Reliab., 43, 2003, pp. 1049–1060

    Article  Google Scholar 

  12. R. Maboudian, R.T. Howe, Critical review: adhesion in surface micromechanical structures, J. Vac. Sci. Technol. B, 15, 1997, p. 1

    Article  CAS  Google Scholar 

  13. R.E. Sulouff, “MEMS opportunities in accelerometers and gyros and the microtribological problems limiting commercialization”, in: B. Bhushan (Ed.), Tribology Issues and Opportunities in MEMS, Kluwer Academic Publishers, Dordrecht, Netherlands, 1998, pp. 109–120

    Google Scholar 

  14. M.R. Douglass, 36th IEEE International Reliability Physics Symposium Proceedings, IEEE, New York, 1998, pp. 9–16.

    Google Scholar 

  15. M.W. van Spengen, R. Puers, I. De Wolf. A physical model to predict stiction in MEMS, J. micromech. Microeng., 12, 2002, pp. 702–713.

    Article  Google Scholar 

  16. B. Bhushan, Plenary lecture 1st Vienna conference on micro/nano technology, Mar 2005

    Google Scholar 

  17. S.L. Miller, G. LaVine, M.S. Rodgers, J.J. Sniegowski, J.P. Waters, P.J. McWhorter, Routes to failure in rotating MEMS devices experiencing sliding friction, Proc. SPIE Micromachined devices and Comp. III., 3224, 1997, pp. 24–30

    ADS  Google Scholar 

  18. X. Lafontan, F. Pressecq, F. Beaudoin, S. Rigo, M. Dardalhon. The advent of MEMS in space. Microelectron Reliab 43,2003, pp. 1061–1083

    Article  Google Scholar 

  19. Courtesy of TIMA micro and nanosystems group, France.

    Google Scholar 

  20. N.R. Tas, A.H. Sonnenberg, A.F.M. Sander, M.C. Elwenspoek, MEMS. In: Proceedings, IEEE, Tenth Annual International Workshop on MEMS-97, 26–30, 1997, pp. 215–220

    Google Scholar 

  21. M. Urbakh, J. Klafter, D. Gourdon, J. Israelachvili. The nonlinear nature of friction, Nature 430, 2004, pp. 525–528

    Article  PubMed  ADS  CAS  Google Scholar 

  22. B. Bhushan, Handbook of Nanotechnology, Springer, Berlin/Heidelberg/New York, 2004.

    Book  Google Scholar 

  23. B. Bhushan, Applications of micro/nanotribology to magnetic storage devices and MEMS, Trib. Int. 28, 1995, pp. 85–96.

    Article  CAS  Google Scholar 

  24. D.W. Brenner, Mysteries of Friction and Wear Unfolding: CMS Advances the Field of Tribology, The Amptiac Newsletter, 5, 2001, pp. 1–14

    Google Scholar 

  25. C.M. Mate. Force microscopy studies of the molecular origins of friction and lubrication, IBM J. Res. Dev. 39, 1995, pp. 617–627.

    Article  CAS  Google Scholar 

  26. J.N. Israelachvili, “Techniques for Direct Measurements of Forces Between Surfaces in Liquids at the Atomic Scale,” Chemtracts Anal. Phys. Chem. 1, 1, 1989

    CAS  Google Scholar 

  27. A.D. Romig, M.T. Dugger, P.J. McWhorter. Materials issues in microelectromechanical devices: science, engineering, manufacturability and reliability, Acta Mater. 51, 2003, pp. 5837–5866

    Article  CAS  Google Scholar 

  28. F. Bowden, D. Tabor, The Friction and Lubrication of solids, Clarendon Press, Oxford 1968.

    Google Scholar 

  29. N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, M. Elwenspoek. Stiction in surface micromachining, J. Micromech. Microeng. 6, 1996, pp. 385.

    Article  ADS  CAS  Google Scholar 

  30. T. Stifter, O. Marti, B. Bhushan, Phys. Rev. B 62, 2000, pp. 13667–13673.

    Article  ADS  CAS  Google Scholar 

  31. Y. Ando, J. Ino. Friction and pull-off forces on sub-micrometer size asperities, Wear 216, 1998, pp. 115–122

    Article  CAS  Google Scholar 

  32. K.L. Johnson, K. Kendall, A.D. Roberts. Proc. R. Soc. London A 324, 1971, pp. 301.

    Article  ADS  CAS  Google Scholar 

  33. B. Bhushan, Self-assembled monolayers for controlling hydrophobicity and/or friction and wear, in: B. Bhushan (Ed.), Modern Tribology Handbook, Vol. 2: Materials Coatings and Industrial Applications, CRC Press, Boca Raton, FL, 2001, pp. 909–929

    Google Scholar 

  34. B.N.J. Persson, E. Tosatti. The effect of surface roughness on the adhesion of elastic solids, J. Chem. Phys., 115, 2001, pp. 5597–5610

    Article  ADS  CAS  Google Scholar 

  35. S.-H. Yang, S.M. Hsu, Effect of colloidal probe random surface features on adhesion, Proc. World Tribology Congress III, Sep 2005.

    Google Scholar 

  36. M.P. de Boer, J.A. Knapp, T.A. Michalske, U. Srinivasan, R. Maboudian. Adhesion hysteresis of silane coated microcantilevers. Acta Mater. 48, 2000, pp. 4531.

    Article  Google Scholar 

  37. C.H. Mastrangelo, C.H. Hsu, A simple experimental technique for the measurement of the work of adhesion of microstructures, IEEE Solid-State Sensor and Actuator Workshop, New York, USA, 1992, pp. 208.

    Google Scholar 

  38. M.P. de Boer, J.A. Knapp, T.M. Mayer, T.A. Michalske. The role of interfacial properties on MEMS performance and reliability, Proc. SPIE 3825, 1999, pp. 2

    Article  ADS  Google Scholar 

  39. J.J. Rha, S.C. Kwon, J.R. Cho, S. Yim, N. Saka. Creation of ultra-low friction and wear surfaces micro-devices using carbon films, Wear 259, 2005, pp. 765–770.

    Article  CAS  Google Scholar 

  40. W.R. Ashurst, C. Yau, C. Carraro, R. Maboudian, M.T. Dugger, Dichlorodimethylsilane as an anti-stiction monolayer for MEMS: A comparison to the Octadecyltrichlosilane self-assembled monolayer, J. MEMS, 10, 2001, pp. 41–49.

    CAS  Google Scholar 

  41. B. Bhushan, T. Kasai, G. Kulik, L. Barbieri, P. Hoffmann, AFM study of perfluoroalkylsilane and alkylsilane selfassembled monolayers for anti-stiction in MEMS/NEMS, Ultramicroscopy, 105, 2005, pp. 176–188

    Article  CAS  Google Scholar 

  42. S.L. Miller, J.J. Sniegowski, G. LaVigne, P.J. McWhorter. Friction in surface micromachined microengines, Sandia National Laboratories, (www.sandia.gov/documents).

    Google Scholar 

  43. E. Santer, D. Spaltmann. Adhesion of cleaned nanoscopic metal contacts, Tribotest 9–4, 2003, pp. 333–344

    Article  Google Scholar 

  44. R.W. Carpick, N. Agrait, D.F. Ogletree, M. Salmeron, Variation of the interfacial shear strength and adhesion of a nanometer-sized contact, Langmuir 12, pp. 3334–3340

    Google Scholar 

  45. B.V. Derjaguin, V.M. Muller, Y.P. Toporov. J. Colloids Interface Sci. 1975, pp. 53–314

    Google Scholar 

  46. Y. Ando, Y. Ishikawa, T. Kitahara, Friction characteristics and adhesion force under low normal load, Trans. ASME J. Tribol. 117, 1995, pp. 569–574.

    Article  Google Scholar 

  47. J. Krim, R.A. Widom, Damping of a Crystal Oscillator by an Adsorbed Monolayer and Its Relation to Interfacial Viscosity, Phys. Rev. B 38, 1988, pp. 12184

    Article  ADS  Google Scholar 

  48. S. Sundararajan, B. Bhushan. Static friction and surface roughness studies of surface micromachined electrostatic micromotors using an atomic force/ friction force microscope, J. Vac. Sci. Technol. A 19(4), 2001, pp. 1777–1785

    Article  ADS  CAS  Google Scholar 

  49. H. Liu, B. Bhushan, Nanotribological characterization of digital micromirror devices using an atomic force microscope, Ultramicroscopy 100, 2004, pp. 391–412

    Article  PubMed  CAS  Google Scholar 

  50. K.S.K. Karuppiah, S. Sundararajan. A comparison of lateral calibration techniques for quantitative friction force microscopy, Proc. World Tribology Congress III, sep 2005.

    Google Scholar 

  51. S. Zhang, G. Wagner, S.N. Medyanik, W.-K. Liu, Y.-H. Yu, Y.-W. Chung, Experimental and molecular dynamics simulation studies of friction behavior of hydrogenated carbon films, Surf. and Coat. Technol. 177–178 (2004) 818–823

    Article  CAS  Google Scholar 

  52. H. Wang, Y.-Z. Hu, T. Zhang, Simulations on atomic-scale friction between self-assembled monolayers: Phononic energy dissipation, Tribology International, 2005

    Google Scholar 

  53. M.G. Lim, J.C. Chang, D.P. Schultz, R.T. Howe, R.M. White. Polysilicon microstructures to characterize static friction. In: Proc IEEE Workshop on Micro Electro Mechanical Systems, 82, 1990, pp. 11–14

    Google Scholar 

  54. D.C. Senft, M.T. Dugger. Friction and wear in surface micromachined tribological test devices. Proc. SPIE, 1997, pp. 3224–3231

    Google Scholar 

  55. M.P. de Boer, D.L. Luck, J.A. Walraven, J.M. Redmond. Characterization of an inchworm actuator fabricated by polysilicon surface micromachining. Proc. SPIE, 4558, 2001, pp. 169.

    Article  ADS  Google Scholar 

  56. M.Z. Huq, J.-P. Celis, Expressing wear rate in sliding contacts based on dissipated energy, Wear, 252, 2002, pp 375–383

    Article  CAS  Google Scholar 

  57. D. Drees, S. Achanta, J.-P. Celis, Surface testing into the 21st century, Bridging the gap between nano and macro, 1st Vienna International conference on micro-and nano-technology, Vienna, Austria, 9–11 March 2005.

    Google Scholar 

  58. B. Bhushan, Nanotribology and nanomechanics, Wear 259, 2005, pp. 1507–1531

    Article  CAS  Google Scholar 

  59. R. Kaneko, T. Miyamoto, Y. Andoh, E. Hamada. Microwear, Thin Solid Films, 273, 1996, pp. 105–111

    Article  CAS  Google Scholar 

  60. S. Miyake, R. Kaneko, Microtribological properties and potential applications of hard lubricating coatings, Thin Solid Films, 212, 1992, pp. 256–261

    Article  CAS  Google Scholar 

  61. S. Sundararajan, B. Bhushan, Micro/nanotribology of ultra-thin hard amorphous carbon coating using atomic force /friction force microscopy, Wear, 225–229, 1999, pp. 678–689

    Article  Google Scholar 

  62. A.R. Machcha. An investigation of nanowear in contact recording, Wear, 197, 1996, pp. 211–220

    Article  CAS  Google Scholar 

  63. A. Ramalho, J.-P. Celis. High temperature fretting behavior of plasma vapor deposition TiN Coatings, Surf. Coat. Technol, 155, 2002, pp. 169–175

    Article  CAS  Google Scholar 

  64. Z. Tao, B. Bhushan. Bonding, degradation, and environmental effects on novel perfluoropolyether lubricants, Wear, 259, 2005, pp. 1352–1361

    Article  CAS  Google Scholar 

  65. U. Beerschwinger, T. Albrecht, D. Mathieson, R.L. Reuben, S.J. Yang. Wear at microscopic scales and light loads for MEMS applications, Wear, 181–183, 1995, pp. 42–35

    Google Scholar 

  66. S. Achanta, D. Drees, J.-P. Celis. Friction and nanowear of hard coatings in reciprocating sliding at milli-Newton loads, Wear, 259, 2005, pp. 719–729

    Article  CAS  Google Scholar 

  67. K.J. Gabriel, F. Behl., In-situ friction and wear measurements in polysilicon mechanisms, Sens. Actuators, A21–23, 1990, pp. 184

    Article  Google Scholar 

  68. M. Mehregany, S.D. Senturia and J.H. Lang, Measurements of wear in polysilicon micromotors, IEEE Trans. Electron. Devices, 39, 1992, pp. 1136–1143

    Article  ADS  Google Scholar 

  69. M.R. Houston, R.T. Howe, R. Maboudian Proc. Solid-State Sensors and Actuators-Transducers 95, Stockholm, Sweden. 1995, pp. 210.

    Google Scholar 

  70. E.D. Flinn, Lotus leaf yields slick idea for MEMS, Aerospace America/May 2005, pp. 25

    Google Scholar 

  71. K. Glasmästar (Eds.), S. Sjödin (Eds.), Final report for the research program, Biocompatible materials, SSF research programme: Biocompatible Materials, Chalmers University of Technology and Göteborg University, 2004, pp. 19–39.

    Google Scholar 

  72. E.-S. Yoon, S.R. Arvind, K. Hosung, B. Kim, D.-H. Suh, K.Y. Jeong, H. Eui. Tribological Properties of Nano/Micro-Patterned PMMA surfaces on silicon wafer, Proc. World Tribology congress III, sep 2005

    Google Scholar 

  73. D. Liu, G. Benstetter, E. Lodermeier. Surface roughness, mechanical and tribological properties of ultrathin tetrahedral amorphous carbon coatings from atomic force measurements, Thin Solid Films, 436, 2003, pp. 244–249

    Article  CAS  Google Scholar 

  74. R. Huber, N. Singer, Out with the old and in with the new, Materials today Jul/Aug 2002, pp. 36–43

    Google Scholar 

  75. A.R. Kraussa, Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices, Diam. Relat. Mater. 10, 2001, pp. 1952–1961

    Article  Google Scholar 

  76. X. Li, B. Bhushan, Micro/nanomechanical characterization of ceramic films for microdevices, Thin Solid Films, 340, 1999, pp. 210–217

    Article  CAS  Google Scholar 

  77. G. Radhakrishnan, R.E. Robertson, P.M. Adams, R.C. Cole. Integrated TiC coatings for moving MEMS, Thin Solid Films, 420–421, 2002, pp. 553–564

    Article  Google Scholar 

  78. S. Sundararajan, B. Bhushan. Micro/nanotribological studies of polysilicon and SiC films for MEMS applications, Wear, 217,1998, pp. 251–261

    Article  CAS  Google Scholar 

  79. D. Liu, G. Benstetter, E. Lodermeier. Surface roughness, mechanical and tribological properties of ultrathin tetrahedral amorphous carbon coatings from atomic force measurements, Thin Solid Films, 436, 2003, pp. 244–249.

    Article  CAS  Google Scholar 

  80. H.-S. Ahna, P.D. Cuonga, S. Park, Y.-W. Kim, J.-C. Lim. Effect of molecular structure of self-assembled monolayers on their tribological behaviors in nano-and microscales, Wear, 255, 2003, pp. 819–825

    Article  CAS  Google Scholar 

  81. R. Maboudian, W.R. Ashurst, C. Carraro, Self-assembled monolayers as antistiction coatings for MEMS: characteristics and recent developments, Sens. Actuators 82, 2000, pp. 219–223

    Article  Google Scholar 

  82. Nikhil S. Tambe, B. Bhushan, Micro/nanotribological characterization of PDMS and PMMA used for BioMEMS/NEMS applications, Ultramicroscopy, 105, 2005, pp. 238–247.

    Article  CAS  Google Scholar 

  83. X.-C. Lu, B. Shi, L.K.Y. Li, J. Luo, J. Wang, H. Li. Investigation on microtribological behavior of thin films using friction force microscopy, Surf. Coat. Technol. 128–129, 2000, pp. 341–345

    Article  Google Scholar 

  84. A.A. Voevodin and J.S. Zabinski, Supertough wear-resistant coatings with “chameleon” surface adaptation, Thin Solid Films, 370, 2000, pp 223–231

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Achanta, S., Celis, JP. (2007). Nanotribology of MEMS/NEMS. In: Gnecco, E., Meyer, E. (eds) Fundamentals of Friction and Wear. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36807-6_23

Download citation

Publish with us

Policies and ethics