Skip to main content

Chordless Paths Through Three Vertices

  • Conference paper
Parameterized and Exact Computation (IWPEC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3162))

Included in the following conference series:

  • 523 Accesses

Abstract

Consider the following problem, that we call “Chordless Path through Three Vertices” or Cp3v, for short: Given a simple undirected graph G=(V,E), a positive integer k, and three distinct vertices s, t, and vV, is there a chordless path from s via v to t in G that consists of at most k vertices? In a chordless path, no two vertices are connected by an edge that is not in the path. Alternatively, one could say that the subgraph induced by the vertex set of the path in G is the path itself. The problem has been raised in the context of service deployment in communication networks. We resolve the parametric complexity of Cp3v by proving it W[1]-complete with respect to its natural parameter k. Our reduction extends to a number of related problems about chordless paths. In particular, deciding on the existence of a single directed chordless (s,t)-path in a digraph is also W[1]-complete with respect to the length of the path.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazgan, C.: Schémas d’approximation et complexité paramétrée. Rapport du stage (DEA), Université Paris Sud (1995)

    Google Scholar 

  2. Berge, C.: Färbung von Graphen deren sämtliche beziehungsweise deren ungerade Kreise starr sind (Zusammenfassung). Wiss. Z.Martin Luther Univ. HalleWittenberg Math. Naturwiss. Reihe, 114–115 (1961)

    Google Scholar 

  3. Bienstock, D.: On the complexity of testing for odd holes and induces odd paths. Discrete Math. 90(1), 85–92 (1991)

    Google Scholar 

  4. Bienstock, D.: Corrigendum to: On the complexity of testing for odd holes and induces odd paths. Discrete Math. 102(1), 109 (1992)

    Google Scholar 

  5. Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: On the parameterized complexity of short computation and factorization. Arch. Math. Logic 36(4–5), 321–337 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cesati, M.: Perfect code is W[1]-complete. Inform. Process. Lett. 81(3), 163–168 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cesati, M.: The Turing way to parameterized complexity. J. Comput. Syst. Sci. 67(4), 654–685 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cesati, M., Trevisan, L.: On the efficiency of polynomial time approximation schemes. Inform. Process. Lett. 64(4), 165–171 (1997)

    Article  MathSciNet  Google Scholar 

  9. Chudnovsky, M., Robertson, N., Seymour, P.D., Thomas, R.: The strong perfect graph theorem (2003) (manuscript)

    Google Scholar 

  10. Chudnovsky, M., Seymour, P.D.: Recognizing Berge graphs (2003) (manuscript)

    Google Scholar 

  11. CornuéJols, G., Liu, X., Vušković, K.: A polynomial algorithm for recognizing perfect graphs. In: Proc. 44th Annu. IEEE Sympos. Found. Comput. Sci., pp. 20–27 (2003)

    Google Scholar 

  12. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: On completeness for W[1]. Theoret. Comput. Sci. 141, 109–131 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, Heidelberg (1999)

    Google Scholar 

  14. Downey, R.G., Fellows, M.R., Kapron, B., Hallett, M.T., Wareham, H.T.: Parameterized complexity and some problems in logic and linguistics. In: Matiyasevich, Y.V., Nerode, A. (eds.) LFCS 1994. LNCS, vol. 813, pp. 89–101. Springer, Heidelberg (1994)

    Google Scholar 

  15. Fellows, M.R.: The Robertson-Seymour theorems: A survey of applications. In: Proc. AMS-IMS-SIAM Joint Summer Research Conf., Providence, RI, pp. 1–18 (1989)

    Google Scholar 

  16. Fellows, M.R., Kratochvíl, J., Middendorf, M., Pfeiffer, F.: The complexity of induced minors and related problems. Algorithmica 13, 266–282 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canad. J. Math. 8, 399–404 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fortune, S., Hopcroft, J.E., Wyllie, J.: The directed subgraph homeomorphism problem. Theoret. Comput. Sci. 10, 111–121 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  19. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  20. Haas, R.: Service Deployment in Programmable Networks. PhD thesis, ETH Zurich, Switzerland (2003)

    Google Scholar 

  21. Karp, R.M.: On the complexity of combinatorial problems. Networks 5, 45–68 (1975)

    MATH  MathSciNet  Google Scholar 

  22. Lueker, G.S., Rose, D.J., Tarjan, R.E.: Algorithmic aspects of vertex elimination in graphs. SIAM J. Comput. 5, 266–283 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mcdiarmid, C., Reed, B., Schrijver, A., Shepherd, B.: Non-interfering network flows. In: Proc. 3rd Scand. Workshop Algorithm Theory, pp. 245–257 (1992)

    Google Scholar 

  24. Mcdiarmid, C., Reed, B., Schrijver, A., Shepherd, B.: Induced circuits in planar graphs. J. Combin. Theory Ser. B 60, 169–176 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  25. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Habilitation thesis, Wilhelm-Schickard Institut für Informatik, Universität Tübingen, Germany (2002)

    Google Scholar 

  26. Nikolopoulos, S.D., Palios, L.: Hole and antihole detection in graphs. In: Proc. 15th ACM-SIAM Sympos. Discrete Algorithms, pp. 843–852 (2004)

    Google Scholar 

  27. Robertson, N., Seymour, P.D.: Graph minors XIII. The disjoint paths problem. J. Combin. Theory Ser. B 63, 65–110 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13, 566–579 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haas, R., Hoffmann, M. (2004). Chordless Paths Through Three Vertices. In: Downey, R., Fellows, M., Dehne, F. (eds) Parameterized and Exact Computation. IWPEC 2004. Lecture Notes in Computer Science, vol 3162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28639-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28639-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23071-7

  • Online ISBN: 978-3-540-28639-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics