Skip to main content

Self-Stabilization and Behavioral Diversity of Embodied Adaptive Locomotion

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3139))

Abstract

Locomotion is of fundamental importance in understanding adaptive behavior. In this paper we present two case studies of robot locomotion that demonstrate how higher level of behavioral diversity can be achieved while observing the principle of cheap design. More precisely, it is shown that, by exploiting the dynamics of the system-environment interaction, very simple controllers can be designed which is essential to achieve rapid locomotion. Special consideration must be given to the choice of body materials. We conclude with some speculation about the importance of locomotion for understanding cognition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brooks, R.A.: A robot that walks: emergent behaviors from a carefully evolved network. Neural Computation 1(2), 253–262 (1989)

    Article  Google Scholar 

  2. Vukobratovic, M., Stepanenko, J.: On the stability of anthropomorphic systems. Mathematical Biosciences 15, 1–37 (1972)

    Article  MATH  Google Scholar 

  3. Yamaguchi, J., Soga, E., Inoue, S., Takanishi, A.: Development of a bipedal humanoid robot - control method of whole body cooperative dynamic biped walking. In: Proc. IEEE Int. Conference on Robotics and Automation, pp.368-374 (1999)

    Google Scholar 

  4. Hirose, M., Haikawa, Y., Takenaka, T., Hirai, K.: Development of humanoid robot ASIMO. In: Proc. Int. Conference on Intelligent Robots and Systems (2001)

    Google Scholar 

  5. Loeffler, K., Gienger, M., Pfeiffer, F.: Sensor and control design of a dynamically stable biped robot. In: ICRA 2003, pp. 484–490 (2003)

    Google Scholar 

  6. Arikawa, K., Hirose, S.: Development of quadruped walking robot TITANVIII. In: Proceedings of International Conference on Intelligent Robots and Systems (IRO 1996), pp. 208–214 (1996)

    Google Scholar 

  7. Collins, S.H., Wisse, M., Ruina, A.: A three-dimentional passive-dynamic walking robot with two legs and knees. International Journal of Robotics Research 20, 607–615 (2001)

    Article  Google Scholar 

  8. McGeer, T.: Passive dynamic walking. International Journal of Robotics Research 9, 62–82 (1990)

    Article  Google Scholar 

  9. Wisse, M., van Frankenhuyzen, J.: Design and construction of MIKE: A 2D autonomous biped based on passive dynamic walking. In: Proceedings of International Symposium of Adaptive Motion and Animals and Machines, AMAM 2003 (2003)

    Google Scholar 

  10. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)

    Google Scholar 

  11. Taga, G., Yamaguchi, Y., Shimizu, H.: Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biological Cybernetics 65, 147–159 (1991)

    Article  MATH  Google Scholar 

  12. Fukuoka, Y., Kimura, H., Cohen, A.H.: Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. Int. Journal of Robotics Research 22(3-4), 187–202 (2003)

    Article  Google Scholar 

  13. Ishiguro, A., Ishimaru, K., Hayakawa, K., Kawakatsu, T.: Toward a ”wellbalanced” design: A robotic case study -How should control and body dynamics be coupled? In: Proc. of The 2nd International Symposium on Adaptive Motion of Animal and Machines (2003)

    Google Scholar 

  14. Kubow, T.M., Full, R.J.: The role of the mechanical system in control: a hypothesis of self-stabilization in hexapedal runners. Phil. Trans. R. Soc. Lond. B 354, 849–861 (1999)

    Article  Google Scholar 

  15. Raibert, H.M.: Legged robots that balance. MIT Press, Cambridge (1986)

    Google Scholar 

  16. Buehler, M.: Dynamic locomotion with one, four and six-legged robots. Journal of the Robotics Society of Japan 20(3), 15–20 (2002)

    MathSciNet  Google Scholar 

  17. Alexander, R.: McN.: Three uses for springs in legged locomotion. The International Journal of Robotic Research 9(2), 53–61 (1990)

    Article  Google Scholar 

  18. Seyfarth, A., Geyer, H., Guether, M., Blickhan, R.: A movement criterion for running. J. Biomech. 35(5), 649–655 (2002)

    Article  Google Scholar 

  19. Iida, F.: Exploiting friction for a hopping robot. In: Proc. of Adaptive Motion of Animals and Machines (2003)

    Google Scholar 

  20. Iida, F., Dravid, R., Paul, C.: Design and control of a pendulum driven hopping robot. In: Proceedings of International Conference on Intelligent Robots and Systems 2002 (IROS 2002), pp. 2141–2146 (2002)

    Google Scholar 

  21. Paul, C., Dravid, R., Iida, F.: Control of lateral bounding for a pendulum driven hopping robot. In: Proc. of 5th International Conference on Climbing and Waling Robots (CLAWAR 2002), pp. 333–340 (2002)

    Google Scholar 

  22. Iida, F., Pfeifer, R.: Ceap rapid locomotion of a quadruped robot: Selfstabilization of bounding gait. In: Groen, F., et al. (eds.) Proc. of Intelligent Autonomous Systems, vol. 8, pp. 642–649. IOS Press, Amsterdam (2003)

    Google Scholar 

  23. Cruse, H., Bartling, C.H., Brunn, D.E., Dean, J., Dreifert, M., Kindermann, T., Schmitz, J.: Walking: A complex behavior controlled by simple systems. Adaptive Behavior 3(4), 385–418 (1995)

    Article  Google Scholar 

  24. Herr, H.M., McMahon, T.A.: A trotting horse model. The International Journal of Robotics Research 19(6), 566–581 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iida, F., Pfeifer, R. (2004). Self-Stabilization and Behavioral Diversity of Embodied Adaptive Locomotion. In: Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds) Embodied Artificial Intelligence. Lecture Notes in Computer Science(), vol 3139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27833-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27833-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22484-6

  • Online ISBN: 978-3-540-27833-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics