Skip to main content

Symplectic Twistors and Geometric Quantization of Strings

  • Chapter
Book cover Algebraic Geometry and its Applications

Part of the book series: Aspects of Mathematics ((ASMA,volume 25))

  • 366 Accesses

Abstract

We present the geometric quantization scheme for the bosonic string theory in twistor terms. Starting from the loop space of a Lie group we define a symplectic twistor bundle over the loop space and reformulate the geometric quantization problem in terms of this bundle. For the standard bosonic string we recover in this way the well known critical dimension condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowick M.J., Rajeev S.G. The holomorphic geometry of closed bosonic string theory and Dif f(S 1)/ S 1, Nucl. Phys. B293 (1987), 348–384;

    Article  MathSciNet  Google Scholar 

  2. Bowick M.J., Rajeev S.G. Anomalies as curvature in complex geometry, Nucl. Phys. B296 (1988), 1007–1033.

    Article  MathSciNet  Google Scholar 

  3. Pilch K., Warner N.P. Holomorphic structure of superstring vacua, Class. Quantum Gray. 4 (1987), 1183–1192;

    Article  MathSciNet  MATH  Google Scholar 

  4. Mickelsson J. String quantization on group manifolds and the holomorphic geometry of Dif f(S 1)/ S 1, Commun. Math. Phys. 112 (1987), 653–661;

    Article  MathSciNet  MATH  Google Scholar 

  5. Kirillov A.A., Juriev D.V. Kähler geometry of the infinite-dimensional homogeneous space M = Dif f(S 1)/ Rot (S 1)Nonlinear gravitons and curved twistor theory, Funkc. anal. i ego pril. 21 (1987), no. 4, 35–46 (Russian).

    Google Scholar 

  6. Penrose R. Nonlinear gravitons and curved twistor theory, Gen. Relat. Gray. 7 (1976), 31–52.

    Article  MathSciNet  MATH  Google Scholar 

  7. Hitchin N.J., Karlhede A., Lindstrøm U., Roček M. Hyperkahler metrics and supersymmetry, Commun. Math. Phys. 108 (1987), 535–589

    Article  MATH  Google Scholar 

  8. Salamon S., Quaternionic Kähler manifolds, Invent. math. 67 (1982), 143–171;

    Article  MathSciNet  MATH  Google Scholar 

  9. Mamone Capria M., Salamon S. Yang-Mills fields on quaternionic spaces, Nonlinearity 1 (1988), 517–530;

    Article  MathSciNet  MATH  Google Scholar 

  10. Nitta T. Vector bundles over quaternionic Kähler manifolds, Tohôku Math. J. 40 (1988), 425–440;

    Article  MathSciNet  MATH  Google Scholar 

  11. Topiwala P.A new proof of the existence of Kähler -Einstein metrics on K3, Invent. math. 89 (1987), 425–454.

    Article  MathSciNet  MATH  Google Scholar 

  12. Atiyah M.F., Hitchin N.J., Singer I.M. Self-duality on four-dimensional Riemannian geometry, Proc. Roy. Soc. London 362 (1978), 425–461;

    Article  MathSciNet  MATH  Google Scholar 

  13. Bryant R. Lie groups and twistor spaces, Duke Math. J. 52 (1985), 223–261;

    Article  MathSciNet  MATH  Google Scholar 

  14. Burstall F.E., Rawnsley J.H. Twistor theory for Riemannian symmetric spaces with applications to harmonic maps of Riemann surfaces, Springer Lect. Notes Math. 1424, Berlin-Heidelberg-New York, 1990;

    MATH  Google Scholar 

  15. O’Brian N.R., Rawnsley J.H. Twistor spaces, Ann. Glob. Anal. Geom. 3 (1985), 29–58.

    Article  MathSciNet  MATH  Google Scholar 

  16. Vaisman I. Symplectic twistor spaces, J. Geom. Phys. 3 (1986), 507–524.

    Article  MathSciNet  MATH  Google Scholar 

  17. Kirillov A.A. Geometric quantization, Itogi nauki i tehn. Sovr. probl. matem. Fund. napray. vol. 4, VINITI Moscow 1985, 141–178 (Russian);

    MathSciNet  Google Scholar 

  18. Sniatycki J. Geometric quantization and quantum mechanics, Springer, New York, 1980;

    Book  MATH  Google Scholar 

  19. Woodhouse N.J.M. Geometric quantization, 2nd ed., Clarendon Press, Oxford, 1992.

    MATH  Google Scholar 

  20. Pressley A., Segal G.Loop groups, Clarendon Press, Oxford, 1986.

    MATH  Google Scholar 

  21. Atiyah M.F. Geometry of Yang-Mills fields, Scuola norm. super., Pisa, 1979.

    MATH  Google Scholar 

  22. Segal G. Unitary representations of some infinite dimensional groups, Commun. Math. Phys. 80 (1981), 301–342.

    Article  MATH  Google Scholar 

  23. Hong D.K., Rajeev S.G. Universal Teichmüller space and Dif f(S 1)/S 1, Commun. Math. Phys. 135 (1991), 401–411;

    Article  MathSciNet  MATH  Google Scholar 

  24. Nag S., Verjovsky A.Dif f(S 1) and the Teichmüller spaces, Commun. Math. Phys. 130 (1990), 123–128.

    Article  MathSciNet  MATH  Google Scholar 

  25. Lehto O. Univalent functions and Teichmüller spaces, Springer, Berlin-Heidelberg-New York, 1986.

    Google Scholar 

  26. Berezin F.A. Method of second quantization, Nauka, Moscow 1965 (Russian).

    Google Scholar 

  27. Neretin Ju.A. Representations of Virasoro and affine algebras, Itogi nauki i tehn. Sovr. probl. matem. Fund. napray. vol. 22, VINITI, Moscow 1983, 163–224 (Russian).

    Google Scholar 

  28. Feigin B.L. Semi-infinite cohomologies of Kac-Moody and Virasoro Lie algebras, Uspehi mat. nauk 39, 2 (1984), 195–196 (Russian);

    MathSciNet  MATH  Google Scholar 

  29. Frenkel I.B., Garland H., Zuckerman G.J. Semiinfinite cohomology and string theory, Proc. Nat. Acad. Sci. USA 83 (1986), 8442–8446.

    Article  MathSciNet  MATH  Google Scholar 

  30. Goddard P., Olive D. Kac—Moody and Virasoro algebras in relation to quantum physics, Int. J. Mod. Phys. A1 (1986), 303–414.

    Article  MathSciNet  Google Scholar 

  31. Gepner D., Witten E. String theory on group manifolds, Nucl. Phys. B278 (1986), 493–549.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Popov, A.D., Sergeev, A.G. (1994). Symplectic Twistors and Geometric Quantization of Strings. In: Tikhomirov, A., Tyurin, A. (eds) Algebraic Geometry and its Applications. Aspects of Mathematics, vol 25. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-99342-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-99342-7_12

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-322-99344-1

  • Online ISBN: 978-3-322-99342-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics