Skip to main content

Mather Sets for Twist Maps and Geodesics on Tori

  • Chapter
Dynamics Reported

Part of the book series: Dynamics Reported ((DYNAMICS,volume 1))

Abstract

The title refers to a theory which is based on independent research in three different fields—differential geometry, dynamical systems and solid state physics—and which has attracted growing interest and research activity in the last few years. The objects of this theory are respectively:

  1. (1)

    Geodesics on a 2-dimensional torus with Riemannian (or symmetric Finsler) metric.

  2. (2)

    The dynamics of monotone twist maps of an annulus.

  3. (3)

    The discrete Frenkel-Kontorova model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations. Grundlehren der math. Wissenschaften 250. New York–HeidelbergBerlin: Springer, 1983.

    Google Scholar 

  2. V. I. Arnold and A. Avez, Problèmes Ergodiques de la Mécanique Classique. Paris: Gauthiers-Villars, 1967.

    Google Scholar 

  3. S. Aubry, The twist map, the extended Frenkel–Kontorova model and the devil’s staircase. Physica, 7D (1983), 240–58.

    MathSciNet  Google Scholar 

  4. S. Aubry and P. Y. LeDaeron, The discrete Frenkel–Kontorova model and its extensions I: exact results for the ground states. Physica, 8D (1983), 381–422.

    MathSciNet  Google Scholar 

  5. V. Bangert, A uniqueness theorem for za-periodic variational problems. Comment. Math. Helv., 62 (1987), 511–31.

    Article  MathSciNet  Google Scholar 

  6. D. Bernstein, Birkhoff periodic points for twist maps with the graph intersection property. Erg. Th. Dynam. Sys., 5 (1985), 531–7.

    Google Scholar 

  7. D. Bernstein and A. Katok, Birkhoff periodic orbits for small perturbations of completely integrable Hamiltonian systems with convex Hamiltonians. Invent. math., 88 (1987), 225–41.

    Article  MathSciNet  Google Scholar 

  8. G. D. Birkhoff, Surface transformations and their dynamical applications. Acta Math., 43 (1922), 1–119.

    Google Scholar 

  9. G. D. Birkhoff, Dynamical Systems. Am. Math. Soc. Colloq. Publ. IX. Providence RI: Am. Math. Soc., 1927.

    Google Scholar 

  10. G. D. Birkhoff, Sur quelques courbes fermées remarquables. Bull. Soc. Math. France, 60 (1932), 1–26.

    Google Scholar 

  11. J. S. Birman and C. Series, Geodesics with bounded intersection number on surfaces are sparsely distributed. Topology, 24 (1985), 217–25.

    Article  MathSciNet  Google Scholar 

  12. P. L. Boyland and G. R. Hall, Invariant circles and the order structure of periodic orbits in monotone twist maps. Topology, 26 (1987), 21–35.

    Article  MathSciNet  Google Scholar 

  13. H. Busemann and F. P. Pedersen, Tori with one-parameter groups of motions. Math. Scand., 3 (1955), 209–20.

    MathSciNet  Google Scholar 

  14. P. Buser, Riemannsche Flächen und Längenspektrum vom trigonometrischen Standpunkt aus. Habilitationsschrift. Bonn, 1980.

    Google Scholar 

  15. C. Carathéodory, Calculus of Variations and Partial Differential Equations of the First Order. Part II: Calculus of Variations. San Francisco: Holden Day, 1967.

    Google Scholar 

  16. A Chenciner, La dynamique au voisinage d’un point fixe elliptic conservatif; de Poincaré et Birkhoff à Aubry et Mather. Sém. Bourbaki, Exposé 622, Vol. 1983,84. Astérisque, 121, 122 (1985), 147–70.

    Google Scholar 

  17. I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory. Grundlehren der math. Wissenschaften 245. New York–Heidelberg–Berlin: Springer, 1982.

    Google Scholar 

  18. A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore. J. de Math. Pure et Appl., sér. 9, 11 (1932), 333–75.

    Google Scholar 

  19. R. Douady, Applications du théorème des tores invariants. Thèse Sème Cycle. Université Paris V II, 1982.

    Google Scholar 

  20. B. A. Dubrovin, A. T. Fomenko and S. P. Novikov, Modern Geometry—Methods and Applications, Part IL Graduate Texts in Math. 104. New York: Springer, 1984.

    Google Scholar 

  21. A Duschek and W. Mayer, Lehrbuch der Differentialgeometrie. Leipzig–Berlin: Teubner, 1930.

    Google Scholar 

  22. M. Freedman, J. Hass and P. Scott, Closed geodesics on surfaces. Bull. London Math. Soc., 14 (1982), 385–91.

    Article  Google Scholar 

  23. M. Gromov, Structures métriques pour les variétés Riemanniennes. Rédigé par J. Lafontaine et P. Pansu. Paris: CEDIC, 1981.

    Google Scholar 

  24. G. R. Hall, A topological version of a theorem of Mather on twist maps. Erg. Th. Dynam. Sys., 4 (1984), 585_-603.

    Google Scholar 

  25. G. A. Hedlund, Geodesics on a two-dimensional Riemannian manifold with periodic coefficients. Ann. of Math., 33 (1932), 719–39.

    Article  MathSciNet  Google Scholar 

  26. G. A. Hedlund, The dynamics of geodesic flows. Bull. Am. Math. Soc., 45 (1939), 241–60.

    Article  Google Scholar 

  27. R. Herman, Introduction à l’étude des courbes invariantes par les difféomorphismes de l’anneau. Astérisque, 103104 (1983).

    Google Scholar 

  28. E. Hopf, Statistik der Lösungen geodätischer Probleme vom instabilen Typus II. Math. Ann., 116 (1940), 590–608.

    Google Scholar 

  29. E. Hopf, Closed surfaces without conjugate points. Proc. Nat. Acad. Sci., 34 (1948), 47–51.

    Article  Google Scholar 

  30. A. Katok, Some remarks on the Birkhoff and Mather twist theorems. Erg. Th. Dynam. Sys., 2 (1982), 183–94.

    Google Scholar 

  31. B. F. Kimball, Geodesics on a toroid. Am. J. Math., 52 (1932), 29–52.

    Google Scholar 

  32. R. S. MacKay and J. Stark, Lectures on Orbits of Minimal Action for Area-Preserving Maps. Preprint, University of Warwick, May 1985.

    Google Scholar 

  33. R. S. MacKay and I. C. Percival, Converse KAM: theory and practice. Comm. Math. Phys., 98 (1985), 469–512.

    Article  MathSciNet  Google Scholar 

  34. J. N. Mather, Existence of quasi-periodic orbits for twist homeomorphisms of the annulus. Topology, 21 (1982), 457–67.

    Article  MathSciNet  Google Scholar 

  35. J. N. Mather, Non=uniqueness of solutions of Percival’s Euler–Lagrange equation. Comm. Math. Phys., 86 (1982), 465–76.

    Article  Google Scholar 

  36. J. N. Mather, Glancing billiards. Erg. Th. Dynam. Sys., 2 (1982), 397–403.

    Google Scholar 

  37. J. N. Mather, A criterion for the non-existence of invariant circles. Publ. Math. IRES, 63 (1986), 153–204.

    Google Scholar 

  38. J. N. Mather, Non-existence of invariant circles. Erg. Th. Dynam. Sys., 4 (1984), 301–9.

    Google Scholar 

  39. J. N. Mather, More Denjoy minimal sets for area preserving diffeomorphisms. Comment. Math. Helv., 60 (1985), 508–57.

    Article  Google Scholar 

  40. J. N. Mather, Existence of asymptotic orbits for area-preserving monotone twist diffeomorphisms. Manuscript, 1985.

    Google Scholar 

  41. M. Morse, Recurrent geodesics on a surface of negative curvature. Trans. Am. Math. Soc., 22 (1921), 84–100.

    Article  Google Scholar 

  42. M. Morse, A fundamental class of geodesics on any closed surface of genus greater than one. Trans. Am. Math. Soc., 26 (1924), 25–60.

    Article  Google Scholar 

  43. J. Moser, Stable and Random Motions in Dynamical Systems. Ann. of Math. Studies 77. Princeton NJ: Princeton Univ. Press, 1973.

    Google Scholar 

  44. J. Moser, Monotone twist mappings and the calculus of variations. Erg. Th. Dynam. Sys., 6 (1986), 325–33.

    Google Scholar 

  45. J. Moser, Break-down of Stability. In J. M. Jowett, M. Month, S. Turner (eds), Nonlinear Dynamics Aspects of Particle Accelerators. Lect. Notes in Physics 247, 492–518. Berlin–New York: Springer, 1986.

    Google Scholar 

  46. J. Moser, Minimal solutions of variational problems on a torus. Ann. Inst. Henri Poincaré—Analyse non linéaire, 3 (1986), 229–72.

    Google Scholar 

  47. J. Moser, Recent developments in the theory of Hamiltonian systems. SIAM Review, 28 (1986), 459–85.

    Article  MathSciNet  Google Scholar 

  48. I. C. Percival, Variational principles for invariant tori and cantori. In M. Month, J. C. Herrara (eds), Non-Linear Dynamics and the Beam-Beam Interaction. Am. Inst. Phys. Conf. Proc., 57 (1980), 310–20.

    Google Scholar 

  49. J. Stillwell, Classical Topology and Combinatorial Group Theory. Graduate Texts in Math. 72. New York: Springer, 1980.

    Google Scholar 

  50. E. M. Zaustinsky, Extremals on compact E-surfaces. Trans. Am. Math. Soc., 102 (1962), 433–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 John Wiley & Sons and B. G. Teubner

About this chapter

Cite this chapter

Bangert, V. (1988). Mather Sets for Twist Maps and Geodesics on Tori. In: Kirchgraber, U., Walther, HO. (eds) Dynamics Reported. Dynamics Reported, vol 1. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-96656-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-96656-8_1

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-519-02150-6

  • Online ISBN: 978-3-322-96656-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics