Skip to main content

Regional Control of Probabilistic Cellular Automata

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11115))

Abstract

Probabilistic Cellular Automata are extended stochastic systems, widely used for modelling phenomena in many disciplines. The possibility of controlling their behaviour is therefore an important topic. We shall present here an approach to the problem of controlling such systems by acting only on the boundary of a target region.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. See for instance the series of proceedings of the ACRI (Cellular Automata for Research and Industry) conferences Cellular Automata (Lectures Notes in Computer Science, Springer): ACRI2002, LNCS 2493, DOI: https://doi.org/10.1007/3-540-45830-1;ACRI2004, LNCS 3305, https://doi.org/10.1007/b102055; ACRI2006, LNCS 4173, https://doi.org/10.1007/11861201; ACRI2008, LNCS 5191, https://doi.org/10.1007/978-3-540-79992-4; ACRI2010, LNCS 6350, https://doi.org/10.1007/978-3-642-15979-4; ACRI2012, LNCS 7495, https://doi.org/10.1007/978-3-642-33350-7; ACRI2014, LNCS 8751, https://doi.org/10.1007/978-3-319-11520-7; ACRI2016, LNCS 9863, https://doi.org/10.1007/978-3-319-44365-2

  2. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437 (1969). https://doi.org/10.1016/0022-5193(69)90015-0

    Article  MathSciNet  Google Scholar 

  3. Damiani, C., Serra, R., Villani, M., Kauffman, S.A., Colacci, A.: Cell-cell interaction and diversity of emergent behaviours. IET Syst. Biol. 5, 137 (2011). https://doi.org/10.1049/iet-syb.2010.0039

    Article  Google Scholar 

  4. Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern Formation: Characterization, Applications, and Analysis. Birkhäuser, Berlin (2005). https://doi.org/10.1007/b138451

    Book  MATH  Google Scholar 

  5. Ermentrout, G., Edelstein-Keshet, L.: Cellular automata approaches to biological modeling. J. Theor. Biol. 160, 97–133 (1993). https://doi.org/10.1006/jtbi.1993.1007

    Article  Google Scholar 

  6. Boccara, N., Goles, E., Martínez, S., Picco, P. (eds.): Cellular Automata and Cooperative Systems. Nato Science Series C, vol. 396. Springer, Amsterdam (1983). https://doi.org/10.1007/978-94-011-1691-6

    Book  Google Scholar 

  7. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (1998). https://doi.org/10.1007/978-1-4614-1800-9_27

    Book  MATH  Google Scholar 

  8. Codd, E.F.: Cellular Automata. Academic Press, New York (1968). ISBN 0121788504

    MATH  Google Scholar 

  9. Burks, A.W.: Essays on Cellular Automata. University of Illinois Press, Champaign (1970)

    MATH  Google Scholar 

  10. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical Plays, vol. 2. Academic Press, New York (1982). EAN 9781568811420

    MATH  Google Scholar 

  11. Vichniac, G.: Simulating physics with cellular automata. Phys. D 10, 96–115 (1984). https://doi.org/10.1016/0167-2789(84)90253-7

    Article  MathSciNet  MATH  Google Scholar 

  12. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601 (1983). https://doi.org/10.1103/RevModPhys.55.601

    Article  MathSciNet  MATH  Google Scholar 

  13. Wolfram, S.: Universality and complexity in cellular automata. Physica 10D, 1 (1984). https://doi.org/10.1016/0167-2789(84)90245-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Kari, J.: Theory of cellular automata: a survey. Theor. Comput. Sci. 334, 3–33 (2005). https://doi.org/10.1016/j.tcs.2004.11.021

    Article  MathSciNet  MATH  Google Scholar 

  15. Domany, E., Kinzel, W.: Equivalence of cellular automata to Ising models and directed percolation. Phys. Rev. Lett. 53, 311–314 (1984). https://doi.org/10.1103/PhysRevLett.53.311

    Article  MathSciNet  MATH  Google Scholar 

  16. Louis, P.-Y., Nardi, F. (eds.): Probabilistic Cellular Automata, Emergence, Complexity and Computation, vol. 27. Springer, Basel (2018). https://doi.org/10.1007/978-3-319-65558-1

    Book  Google Scholar 

  17. Zerrik, E., Boutoulout, A., El Jai, A.: Actuators and regional boundary controllability for parabolic systems. Int. J. Syst. Sci. 31, 73–82 (2000). https://doi.org/10.1080/002077200291479

    Article  MATH  Google Scholar 

  18. Lions, J.: Controlabilité exacte des systèmes distribueés. CRAS, Série I(302), 471–475 (1986)

    MATH  Google Scholar 

  19. Lions, J.: Exact controllability for distributed systems. Some trends and some problems. In: Spigler, R. (ed.) Applied and Industrial Mathematics. MAIA, vol. 56, pp. 59–84. Springer, Dordrecht (1991). https://doi.org/10.1007/978-94-009-1908-2_7

    Chapter  Google Scholar 

  20. Russell, D.: Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Rev. 20, 639–739 (1978). https://doi.org/10.1137/1020095

    Article  MathSciNet  MATH  Google Scholar 

  21. El Yacoubi, S., El Jai, A., Ammor, N.: Regional controllability with cellular automata models. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI 2002. LNCS, vol. 2493, pp. 357–367. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45830-1_34

    Chapter  MATH  Google Scholar 

  22. Fekih, A.B., El Jai, A.: Regional Analysis of a Class of Cellular Automata Models. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 48–57. Springer, Heidelberg (2006). https://doi.org/10.1007/11861201_9

    Chapter  MATH  Google Scholar 

  23. El Yacoubi, S.: Mathematical method for control problems on cellular automata models. Int. J. Syst. Sci. 39(5), 529–538 (2008). https://doi.org/10.1080/00207720701847232

    Article  MathSciNet  MATH  Google Scholar 

  24. Bagnoli, F., El Yacoubi, S., Rechtman, R.: Synchronization and control of cellular automata. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 188–197. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15979-4_21

    Chapter  MATH  Google Scholar 

  25. Bagnoli, F., Rechtman, R., El Yacoubi, S.: Control of cellular automata. Phys. Rev. E 86, 066201 (2012). https://doi.org/10.1103/PhysRevE.86.066201

    Article  MATH  Google Scholar 

  26. Bagnoli, F., El Yacoubi, S., Rechtman, R.: Toward a boundary regional control problem for Boolean cellular automata. Nat. Comput. (2017). https://doi.org/10.1007/s11047-017-9626-1

  27. Bagnoli, F., El Yacoubi, S., Rechtman, R.: Control of cellular automata. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-642-27737-5_710-1

    Chapter  MATH  Google Scholar 

  28. Bagnoli, F., Rechtman, R.: Regional synchronization of a probabilistic cellular automaton. In: Mauri, G., et al. (eds.) ACRI 2018, LNCS, vol. 11115. pp. 255–263. Springer, Heidelberg (2018)

    Google Scholar 

  29. Bagnoli, F.: Cellular automata in dynamical modelling in biotechnologies. In: Bagnoli, F., Lió, P., Ruffo, S. (eds.) p. 3. World Scientific, Singapore, (1998). https://doi.org/10.1142/9789812813053_0001

  30. Bagnoli, F., Boccara, B., Rechtman, R.: Nature of phase transitions in a probabilistic cellular automaton with two absorbing states. Phys. Rev. E 63, 046116 (2001). https://doi.org/10.1103/PhysRevE.63.046116

    Article  Google Scholar 

  31. Vichniac, G.: Boolean derivatives on cellular automata. Physica 10D, 96 (1984). https://doi.org/10.1016/0167-2789(90)90174-N

    Article  MathSciNet  Google Scholar 

  32. Bagnoli, F.: Boolean derivatives and computation of cellular automata. Int. J. Mod. Phys. C. 3, 307 (1992). https://doi.org/10.1142/S0129183192000257

    Article  MathSciNet  MATH  Google Scholar 

  33. Bagnoli, F., Rechtman, R.: Synchronization and maximum Lyapunov exponents of cellular automata. Phys. Rev. E 59, R1307 (1999). https://doi.org/10.1103/PhysRevE.59.R1307

    Article  MATH  Google Scholar 

Download references

Acknowledgment

R.S. acknowledges partial financial support from PPA-DGAPA-UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Bagnoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bagnoli, F., Dridi, S., El Yacoubi, S., Rechtman, R. (2018). Regional Control of Probabilistic Cellular Automata. In: Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds) Cellular Automata. ACRI 2018. Lecture Notes in Computer Science(), vol 11115. Springer, Cham. https://doi.org/10.1007/978-3-319-99813-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99813-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99812-1

  • Online ISBN: 978-3-319-99813-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics