Skip to main content

Implementation of Automated Pipelines to Generate Knowledge on Challenging Biological Queries

  • Conference paper
  • First Online:
Distributed Computing and Artificial Intelligence, Special Sessions, 15th International Conference (DCAI 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 801))

  • 645 Accesses

Abstract

The main objective of this work is the design and implementation of a reduced set of automated pipelines able to integrate a wide range of existing bioinformatics applications and libraries with the goal of delivering an easy-to-use resource, which can be further used to provide different answers to complex biological questions mainly related with nucleotide and amino acid sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edwards, D., Stajich, J., Hansen, D. (eds.): Bioinformatics: tools and applications. Springer (2009)

    Google Scholar 

  2. Matos, S., Araújo, H., Oliveira, J.L.: Biomedical literature exploration through latent semantics. Adv. Distrib. Comput. Artif. Intell. J., ADCAIJ 2(2), 65 (2013)

    Google Scholar 

  3. Ramos, J., Castellanos-Garzón, J.A., de Paz, J.F., Corchado, J.M.: A data mining framework based on boundary-points for gene selection from DNA-microarrays: pancreatic Ductal Adenocarcinoma as a case study. Eng. Appl. Artif. Intell. 70, 92–108 (2018)

    Article  Google Scholar 

  4. Santos, A., Nogueira, R., Lourenço, A.: Applying a text mining framework to the extraction of numerical parameters from scientific literature in the biotechnology domain. Adv. Distrib. Comput. Artif. Intell. J., ADCAIJ 1(1), 1–8 (2012)

    Google Scholar 

  5. Castellanos-Garzón, J.A., Ramos, J., López-Sánchez, D., F. de Paz, J., Corchado, J.M.: An ensemble framework coping with instability in the gene selection process. Interdiscip. Sci.: Comput. Life Sci. 10, 12–23 (2018)

    Google Scholar 

  6. Ramos, J., López-Sánchez, D., Castellanos-Garzón, J.A., de Paz, J.F., Corchado, J.M.: A CBR framework with gradient boosting based feature selection for lung cancer subtype classification. Comput. Biol. Med. 86, 98–106. (2017)

    Google Scholar 

  7. Ramos, J., Castellanos-Garzón, J.A., González-Briones, A., de Paz, J.F., Corchado, J.M.: An agent-based clustering approach for gene selection in gene expression microarray. Interdiscip. Sci. Comput. Life Sci .9, 1–13 (2017)

    Google Scholar 

  8. Leipzig, J.: A review of bioinformatic pipeline frameworks. Brief. Bioinform. 18(3:1), 530–536 (2017)

    Google Scholar 

  9. Rice, P., Longden, I., Bleasby, A.: EMBOSS: the European molecular biology open software suite. Trends Genet. 16(6), 276–277 (2000)

    Article  Google Scholar 

  10. Quinlan, A.R., Hall, I.M.: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6), 841–842 (2010)

    Article  Google Scholar 

  11. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    Article  Google Scholar 

  12. Kapustin, Y., Souvorov, A., Tatusova, T., Lipman, D.: Splign: algorithms for computing spliced alignments with identification of paralogs. Biol. Direct 3, 20 (2008)

    Article  Google Scholar 

  13. Kiryutin, B., Souvorov, A., Tatusova, T.: ProSplign - protein to genomic alignment tool. manuscript in preparation. https://www.ncbi.nlm.nih.gov/sutils/static/prosplign/prosplign.html

  14. Lourenço, A., Carreira, R.C., Glez-Peña, D., Méndez, J.R., Carneiro, S.A., Rocha, L.M., Díaz, F., Ferreira, E.C., Rocha, I.P., Fdez-Riverola, F., Rocha, M.: BioDR: semantic indexing networks for biomedical document retrieval. Expert Syst. Appl. 37(4), 3444–3453 (2010)

    Article  Google Scholar 

  15. Glez-Peña, D., Díaz, F., Hernández, J.M., Corchado, J.M., Fdez-Riverola, F.: geneCBR: a translational tool for multiple-microarray analysis and integrative information retrieval for aiding diagnosis in cancer research. BMC Bioinform. 10, 187 (2009)

    Google Scholar 

  16. López-Fernández, H., Reboiro-Jato, M., Pérez Rodríguez, J.A., Fdez-Riverola, F., Glez-Peña, D.: The artificial intelligence workbench: a retrospective review. Adv. Distrib. Comput. Artif. Intell. J. (ADCAIJ) 5(1), 73–85 (2016)

    Google Scholar 

  17. López-Fdez, H., Santos, H.M., Capelo, J.L., Fdez-Riverola, F., Glez-Peña, D., Reboiro-Jato, M.: Mass-up: an all-in-one open software application for MALDI-TOF mass spectrometry knowledge discovery. BMC Bioinform. 16, 318 (2015)

    Article  Google Scholar 

  18. Araújo, A.R., Reis, M., Rocha, H., Aguiar, B., Morales-Hojas, R., Macedo-Ribeiro, S., Fonseca, N.A., Reboiro-Jato, D., Reboiro-Jato, M., Fdez-Riverola, F., Vieira, C.P., Vieira, J.: The drosophila melanogaster methuselah gene: a novel gene with ancient functions. PLoS ONE 8(5), e63747 (2013)

    Article  Google Scholar 

  19. Aguiar, B., Vieira, B., Cunha, A.E., Fonseca, N.A., Reboiro-Jato, D., Reboiro-Jato, M., Fdez-Riverola, F., Raspé, O., Vieira, C.P.: Patterns of evolution at the gametophytic self-incompatibility Sorbus aucuparia (Pyrinae) S pollen genes support the non-self recognition by multiple factors model. J. Exp. Bot. 64(1), 2423–2434 (2013)

    Article  Google Scholar 

  20. Reboiro-Jato, D., Reboiro-Jato, M., Fdez-Riverola, F., Vieira, C.P., Fonseca, N.A., Vieira, J:. ADOPS - automatic detection of positively selected sites. J. Integr. Bioinform. 9(3), 18–32 (2016)

    Google Scholar 

  21. Vázquez, N., Vieira, C.P., Amorim, B.S.R., Torres, A., López-Fernández, H., Fdez-Riverola, F., Sousa, J.L.R., Reboiro-Jato, M., Vieira, J.: Large scale analyses and visualization of adaptive amino acid changes projects. Interdiscip. Sci. Comput. Life Sci. 10, 24 (2018)

    Article  Google Scholar 

  22. Chatr-Aryamontri, A., Oughtred, R., Boucher, L., Rust, J., Chang, C., Kolas, N.K., O’Donnell, L., Oster, S., Theesfeld, C., Sellam, A., Stark, C., Breitkreutz, B.J., Dolinski, K., Tyers, M.: The BioGRID interaction database: 2017 update. Nucleic Acids Res. 45(Database issue), D369–D379 (2017)

    Google Scholar 

  23. Gramates, L.S., Marygold, S.J., dos Santos, G., Urbano, J-M., Antonazzo, G., Matthews, B.B., Rey, A.J., Tabone, C.J., Crosby, M.A., Emmert, D.B., Falls, K., Goodman, J.L., Hu, Y., Ponting, L., Schroeder, A.J., Strelets, V.B., Thurmond, J., Zhou, P., The FlyBase Consortium: FlyBase at 25: looking to the future. Nucleic Acids Res. 45(D1), D663–D671 (2017)

    Article  Google Scholar 

  24. Persico, M., Ceol, A., Gavrila, C., Hoffmann, R., Florio, A., Cesareni, G.: HomoMINT: an inferred human network based on orthology mapping of protein interactions discovered in model organisms. BMC Bioinform. 6(Suppl 4), S21 (2005)

    Article  Google Scholar 

  25. Mosca, R., Céol, A., Aloy, P.: Interactome3D: adding structural details to protein networks. Nat. Methods 10(1), 47–53 (2013)

    Article  Google Scholar 

  26. Calderone, A., Castagnoli, L., Cesareni, G.: mentha: a resource for browsing integrated protein-interaction networks. Nat. Methods 10, 690 (2013)

    Article  Google Scholar 

  27. Alanis-Lobato, G., Andrade-Navarro, M.A., Schaefer, M.H.: HIPPIE v2.0: enhancing meaningfulness and reliability of protein–protein interaction networks. Nucleic Acids Res. 45, D408–D414 (2017)

    Article  Google Scholar 

  28. Wu, J., Vallenius, T., Ovaska, K., Westermarck, J., Makela, T.P., Hautaniemi, S.: Integrated network analysis platform for protein-protein interactions. Nat. Methods 6, 75–77 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noé Vázquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vázquez, N. (2019). Implementation of Automated Pipelines to Generate Knowledge on Challenging Biological Queries. In: Rodríguez, S., et al. Distributed Computing and Artificial Intelligence, Special Sessions, 15th International Conference. DCAI 2018. Advances in Intelligent Systems and Computing, vol 801. Springer, Cham. https://doi.org/10.1007/978-3-319-99608-0_59

Download citation

Publish with us

Policies and ethics