Skip to main content

Hydrothermal Synthesis of Hybrid Nanoparticles for Future Directions of Renewal Energy Applications

  • Chapter
  • First Online:

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

This chapter discusses the current development and future scope of the hydrothermal process for the synthesis of a plethora of technology grade materials for advance technological applications. It is used to derive the materials directly from an aqueous solution by controlling the thermodynamic variables such as temperature, pressure, and composition. Herein, the importance is not only given to the conventional hydrothermal process, rather on some of its hybrid techniques such as microwave-assisted, sol gel-assisted, ultrasound-assisted, electrochemical-assisted, optical radiation-assisted, and hot press-assisted hydrothermal methods. These hybrid techniques provide new pathways and opportunities for the synthesis of various kinds of advance materials with novel properties for advanced applications such as in energy production, targeted drug delivery, bio-imaging, and photo-catalyst. In this chapter, stress has been given to highlight the use of different hydrothermal techniques for the synthesis of various forms of the materials in different structures for the use of solar energy harvesting from water to hydrogen production and the assembly of dye-sensitized solar cells for direct conversion of solar to energy application through designing of photovoltaic cell.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adschiri T, Kanaszawa K, Arai K (1992a) Rapid and continuous hydrothermal synthesis of boehmite particles in subcritical and supercritical water. J Am Ceram Soc 75:2615–2618

    Article  CAS  Google Scholar 

  • Adschiri T, Kanaszawa K, Arai K (1992b) Rapid and vontinuous hydrothermal crystallization of metal oxide particles in supercritical water. J Am Ceram Soc 75:1019–1033

    Article  CAS  Google Scholar 

  • Adschiri T, Hakuta Y, Arai K (2000) Hydrothermal synthesis of metal oxide fine particles at supercritical conditions. Ind Eng Chem Res 39:4901–4907

    Article  CAS  Google Scholar 

  • Adschiri T, Hakuta Y, Sue K, Arai K (2001) Hydrothermal synthesis of metal oxide nanoparticles at supercritical conditions. J Nanopart Res 3:227–235

    Article  CAS  Google Scholar 

  • Agegnehu AK, Pan CJ, Tsai MC, Rick J, Su WN, Lee JF, Hwang BJ (2016) Visible light responsive noble metal-free nanocomposite of V-doped TiO2 nanorod with highly reduced graphene oxide for enhanced solar H2 production. Int J Hydrog Energy 41:6752–6762

    Article  CAS  Google Scholar 

  • Ajayan PM, Ebbesen TW (1997) Nanometre-size tubes of carbon. Rep Prog Phys 60:1025–1062

    Article  CAS  Google Scholar 

  • Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–267

    Article  CAS  Google Scholar 

  • Basavalingu B, Byrappa K, Yoshimura M (2001a) Advances in high pressure science and technology. Tata McGraw Publishers, 417 pp

    Google Scholar 

  • Basavalingu B, Jose M, Moreno C, Byrappa K, Gogotsi YG (2001b) Decomposition of silicon carbide in the presence of organic compounds under hydrothermal conditions. Carbon 39:1763–1766

    Article  CAS  Google Scholar 

  • Basavalingu B, Byrappa K, Madhusudan P, Dayananda AS, Yoshimura M (2006) Hydrothermal synthesis and characterization of micro to nano sized carbon particles. J Mater Sci 41:1465–1469

    Article  CAS  Google Scholar 

  • Basavalingu B, Byrappa K, Madhusudan P, Yoshimura M (2007) Hydrothermal synthesis of nanosized crystals of diamond under sub-natural conditions. J Geo Soc India 69:665

    CAS  Google Scholar 

  • Blackburn JM, Long DP, Cabanas A, Watkins JJ (2001) Deposition of conformal copper and nickel films from supercritical carbon dioxide. Science 294:141–145

    Article  CAS  Google Scholar 

  • Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166

    Article  CAS  Google Scholar 

  • Chang JY, Ghule A, Chang JJ, Tzing SH, Ling YC (2002) Opening and thinning of multiwall carbon nanotubes in supercritical water. Chem Phys Lett 363:583–590

    Article  CAS  Google Scholar 

  • Che G, Lakshmi BB, Fisher IR, Martin CR (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349

    Article  CAS  Google Scholar 

  • Chen Y, Zhao S, Wang X, Peng Q, Lin R, Wang Y, Shen R, Cao X, Zhang L, Zhou G (2016) Synergetic integration of Cu1.94S-ZnxCd1-xS heteronanorods for enhanced visible-light-driven photocatalytic hydrogen production. J Am Chem Soc 138:4286–4289

    Article  CAS  Google Scholar 

  • Chen G, Zhang X, Guan L, Zhang H, Xie X, Chen S, Tao J (2018) Phase transition promoted hydrogen evolution performance of MoS2/VO2 hybrids. J Phys Chem C 122:2618. https://doi.org/10.1021/acs.jpcc.7b12040

    Article  CAS  Google Scholar 

  • Dai GH, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384:147–150

    Article  CAS  Google Scholar 

  • Das P, Roy A, Devi PS (2016) Zn2SnO4 as an alternative photoanode for dye sensitized solar cells: current status and future scope. Trans Ind Ceram Soc 75:1–8

    Article  Google Scholar 

  • Das PP, Roy A, Agarkar S, Devi PS (2018a) Hydrothermally synthesized fluorescent Zn2SnO4 nanoparticles for dye sensitized solar cells. Dyes Pigments 154:303–313

    Article  CAS  Google Scholar 

  • Das P, Roy A, Devi PS (2018b) Hydrothermally synthesized fluorescent Zn2SnO4 nanoparticles for dye sensitized solar cells. Dyes Pigments 154:11–22

    Article  Google Scholar 

  • DeVries RC, Roy R, Somiya S, Yamada S (1994) A review of liquid phase systems pertinent to diamond synthesis. Trans Mater Res Soc Japan 14B:641

    Google Scholar 

  • Dontsova D, Fettkenhauer C, Papaefthimiou V, Schmidt J, Antonietti M (2015) 1,2,4-Triazole-based approach to noble-metal-free visible-light driven water splitting over carbon nitrides. Chem Mater 28:772–778

    Article  Google Scholar 

  • Dunlap-Shohl WA, Daunis TB, Wang X, Wang J, Zhang B, Barrera D, Yan Y, Hsu JWP, Mitzi DB (2018) Room-temperature fabrication of a delafossite CuCrO2 hole transport layer for perovskite solar cells. J Mater Chem A 6:469–477

    Article  CAS  Google Scholar 

  • Eric Drexler K (1986) Engines of Creation: The Coming Era of Nanotechnology, Doubleday Publisher, United States

    Google Scholar 

  • Feynman RP (1959) There’s plenty of room at the bottom. Annual meeting of the American Physical Society

    Google Scholar 

  • Forster S, Antonietti M (1998) Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv Mater 10:195–217

    Article  Google Scholar 

  • Fox MA, Dulay M (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357

    Article  CAS  Google Scholar 

  • Frank S, Poncharal P, Wang ZI, De Heer WA (1998) Carbon nanotube quantum resistors. Science 280:1744–1746

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  • Fujito H, Kunioku H, Kato D, Suzuki H, Higashi M, Kageyama H, Abe R (2016) Layered perovskite oxychloride Bi4NbO8Cl: a stable visible light responsive photocatalyst for water splitting. J Am Chem Soc 138:2082–2085

    Article  CAS  Google Scholar 

  • Gebremariam TT, Chen F, Wang Q, Wang J, Liu Y, Wang X, Qaseem A (2018) Bimetallic Mn-Co oxide nanoparticles anchored on carbon nanofibers wrapped in nitrogen doped carbon for application in Zn-air batteries and supercapacitors. ACS Appl Energy Mater 1:1612. https://doi.org/10.1021/acsaem.8b00067

    Article  CAS  Google Scholar 

  • Gersten B (2003) In: Byrappa K, Ohachi T (eds) Handbook of crystal growth technology. William Andrew Publications, New York

    Google Scholar 

  • Gogotsi YG, Nickel KG, Kofstad PJ (1995) Hydrothermal synthesis of diamond from diamond-seeded β-SiC powder. Mater Chem 5:2313–2314

    Article  CAS  Google Scholar 

  • Gogotsi YG, Kofstad P, Yoshmura M, Nickel KG (1996) Formation of sp3-bonded carbon upon hydrothermal treatment of SiC. Diam Relat Mater 5:151

    Article  CAS  Google Scholar 

  • Goldberger J, He R, Zhang Y, Lee S, Yan H, Choi HJ, Yang P (2003) Single-crystal gallium nitride nanotubes. Nature 422:599–602

    Article  CAS  Google Scholar 

  • Gujral SS, Simonov AN, Higashi M, Fang XY, Abe R, Spiccia L (2016) Highly dispersed cobalt oxide on TaON as efficient photoanodes for long-term solar water splitting. ACS Catal 6:3404–3417

    Article  CAS  Google Scholar 

  • Guo Z, Sadler PJ, Tsang SC (1998) Immobilization and visualization of DNA and proteins on carbon nanotubes. Adv Mater 10:701–703

    Article  CAS  Google Scholar 

  • Hakuta Y, Adschiri T, Suzuki T, Chida T, Seino K, Arai K (1998a) Flow method for rapidly producing barium hexaferrite particles in supercritical water. J Am Ceram Soc 81:2461–2464

    Article  CAS  Google Scholar 

  • Hakuta Y, Onai S, Terayama H, Adschiri T, Aria K (1998b) Production of ultra-fine ceria particles by hydrothermal synthesis under supercritical conditions. J Mater Sci Lett 17:1211–1213

    Article  CAS  Google Scholar 

  • Herrmann JM (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115–129

    Article  CAS  Google Scholar 

  • Heggerty S (1986) Diamond genesis in a multiply-constrained model. Nature 320:34

    Article  Google Scholar 

  • Hoffmann MR, Martin ST, Choi WY, Bahnmann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  • Ijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  • Jiang D, Sun Z, Jia H, Lu D, Du P (2016) A cocatalyst-free CdS nanorod/ZnS nanoparticle composite for high-performance visible-light-driven hydrogen production from water. J Mater Chem A Mater Energy Sustain 4:675–683

    Article  CAS  Google Scholar 

  • Kameo A, Yoshimura T, Esumi K (2015) Preparation of noble metal nanoparticles in supercritical carbon dioxide. Colloid Surf A Physicochem Eng Aspect 215:181–189

    Article  Google Scholar 

  • Katayama K, Yao H, Nakanishi F, Doi H, Saegusa A, Okuda N, Yamala T (1998) Lasing characteristics of low threshold ZnSe-based blue/green laser diodes grown on conductive ZnSe substrates. Appl Phys Lett 73:102

    Article  CAS  Google Scholar 

  • Kandiel TA, Takanabe K (2016) Solvent-induced deposition of Cu-Ga-In-S nanocrystals onto a titanium dioxide surface for visible-light-driven photocatalytic hydrogen production. Appl Catal B Environ 184:264–269

    Article  CAS  Google Scholar 

  • Khaselev O, Turner JA (1998) A monolithic photovoltaic-photo-electrochemical device for hydrogen production via water splitting. Science 280:425–427

    Article  CAS  Google Scholar 

  • Lalena JN, Cleary DA, Carpenter E, Dean NF (2008) Nanomaterials synthesis. In: Lalena N, Cleary DA, Carpenter E, Dean NF (eds) Inorganic materials synthesis and fabrication. Wiley, Hoboken

    Chapter  Google Scholar 

  • Lee DC, Mikulec FV, Korgel BA (2004) Carbon nanotube synthesis in supercritical toluene. J Am Chem Soc 126:4951–4957

    Article  CAS  Google Scholar 

  • Lencka MM, Riman RE (2003) In: Byrappa K, Ohachi T (eds) Handbook of crystal growth technology. William Andrew Publications, New York

    Google Scholar 

  • Li L, Yan J, Wang T, Zhao ZJ, Zhang J, Gong J, Guan N (2015a) Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat Commun 6:5881–5810

    Article  Google Scholar 

  • Li H, Yu K, Lei X, Guo B, Chao L, Hao F, Zhu Z (2015b) Synthesis of MoS2@CuO heterogeneous structure with improved photocatalysis performance and H2O adsorption analysis. Dalton Trans 44:10438–10447

    Article  CAS  Google Scholar 

  • Liu W, Zhong W, Wu X, Tang N, Du Y (2005) Hydrothermal microemulsion synthesis of cobalt nanorods and self-assembly into square-shaped nanostructures. J Cryst Growth 284:446–452

    Article  CAS  Google Scholar 

  • McLeod MC, Gale WF, Roberts CB (2004) Metallic nanoparticle production utilizing a supercritical carbon dioxide flow process. Langmuir 20:7078–7082

    Article  CAS  Google Scholar 

  • Motiei M, Hacohen YR, Calderon-Moreno JM, Gedanken A (2001) Preparing carbon nanotubes and nested fullerenes from supercritical CO2 by a chemical reaction. J Am Chem Soc 123:8624–8625

    Article  CAS  Google Scholar 

  • Melto CE, Giardini AA (1974) The composition and significance of gas released from natural diamonds from Africa and Brazil. Am Mineral 59:775

    Google Scholar 

  • Navon O (1991) High internal pressures in diamond fluid inclusions determined by infrared absorption. Nature 353:746–748

    Article  CAS  Google Scholar 

  • Ortiz-Landeros J, Gómez-Yáñez C, López-Juárez R, Dávalos-Velasco I, Pfeiffer H (2012) Synthesis of advanced ceramics by hydrothermal crystallization and modified related methods. J Adv Ceram 1:204–220

    Article  CAS  Google Scholar 

  • Orlov Yu L (1973) Mineralogy of diamond. Nauka, Moscow in Russian

    Google Scholar 

  • Puntes VF, Drishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291:2115–2117

    Article  CAS  Google Scholar 

  • Qui T, Wu XL, Mei YF, Wan GJ, Chu PK, Siu GG (2005) From Si nanotubes to nanowires: synthesis, characterization, and self-assembly. J Cryst Growth 277:143–148

    Article  Google Scholar 

  • Rajamanickam G, Narendhiran S, Muthu SP, Mukhopadhyay S, Perumalsamy R (2017) Hydrothermally derived nanoporous titanium dioxide nanorods/nanoparticles and their influence in dye-sensitized solar cell as a photoanode. Chem Phys Lett 689:19–25

    Article  CAS  Google Scholar 

  • Reverchon E, Adami R (2006) Nanomaterials and supercritical fluids. J Supercrit Fluid 37:1–22

    Article  CAS  Google Scholar 

  • Riman RE, Suchanek WL, Byrappa K, Chen CW, Shuk P, Oakes CS (2002) Solution synthesis of hydroxyapatite designer particulates. Solid State Ionics 151:393–402

    Article  CAS  Google Scholar 

  • Roy R, Tuttle OF (1956) Investigations under hydrothermal conditions. Phys Chem Earth 1:138–180

    Article  Google Scholar 

  • Roy R (1994) Accelerating the kinetics of low-temperature inorganic syntheses. J Solid State Chem 111:11–17

    Article  CAS  Google Scholar 

  • Roy R, Ravichandran D, Ravindranathan P, Badzian A (1996) Evidence for hydrothermal growth of diamond in the C-H-O and C-H-O halogen system. J Mater Res 11:1164–1168

    Article  CAS  Google Scholar 

  • Seo DS, Lee JK, Kim H (2001) Preparation of nanotube-shaped TiO2 powder. J Cryst Growth 229:428–432

    Article  CAS  Google Scholar 

  • Shah PS, Husain S, Johnston KP, Korgel BA (2001) Nanocrystal arrested precipitation in supercritical carbon dioxide. J Phys Chem B 105:9433–9440

    Article  CAS  Google Scholar 

  • Singh GP, Shrestha KM, Nepal A, Klabunde KJ, Sorensen CM (2014) Graphene supported plasmonic photocatalyst for hydrogen evolution in photocatalytic water splitting. Nanotechnology 25:265701 (11pp)

    Article  CAS  Google Scholar 

  • Schmidt I, Benndorf C (1998) Mechanisms of low temperature growth of diamond using halogenated precursorgases. Diam Relat Mater 7:266

    Article  CAS  Google Scholar 

  • Tanigawa S, Irie H (2016) Visible-light-sensitive two-step overall water-splitting based on band structure control of titanium dioxide. Appl Catal B Environ 180:1–5

    Article  CAS  Google Scholar 

  • Tao X, Zhao Y, Mu L, Wang S, Li R, Li C (2017) Bismuth tantalum oxyhalogen: a promising candidate photocatalyst for solar water splitting. Adv Energy Mater 8:1701392–1701397

    Article  Google Scholar 

  • Tian Z, Liu J, Voigt JA, Xu H, Mcddermott MJ (2003) Dendritic growth of cubically ordered nanoporous materials through self-assembly. Nano Lett 3:89

    Article  CAS  Google Scholar 

  • Tsai CC, Teng H (2004) Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment. Chem Mater 16:4352–4358

    Article  CAS  Google Scholar 

  • Vasilev VG, Kovalski VP, Cherski NV (1968) Origin of diamond. Nedra, Moscow (in Russian)

    Google Scholar 

  • Wang D, Yu D, Peng Y, Meng Z, Zhang S, Qian Y (2003) Formation of antimony nanotubes via a hydrothermal reduction process. Nanotechnology 14:748–751

    Article  CAS  Google Scholar 

  • Wang H, Liu Y, Li M, Huang H, Zhong M, Shen H (2009) Hydrothermal growth of large-scale macroporous TiO2 nanowires and its application in 3D dye-sensitized solar cells. Appl Phys A Mater Sci Process 97:25–29

    Article  CAS  Google Scholar 

  • Wang Q, Hisatomi T, Mab SSK, Li Y, Domen K (2014) Core/shell structured La- and Rh-co-doped SrTiO3 as a hydrogen evolution photocatalyst in Z-scheme overall water splitting under visible light irradiation. Chem Mater 26:4144–4150

    Article  CAS  Google Scholar 

  • Wang Q, Hisatomi T, Jia Q, Tokudome H, Zhong M, Wang C, Pan Z, Takata T, Nakabayashi M, Shibata N (2016) Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding. Nat Mater 15:611–615

    Article  CAS  Google Scholar 

  • Wu ZL, Wang CH, Zhao B, Dong J, Lu F, Wang WH, Wang WC, Wu GJ, Cui JZ, Cheng P (2016) A semi-conductive copper-organic framework with two types of photocatalytic activity. Angew Chem Int Ed 55:4938–4942

    Article  CAS  Google Scholar 

  • Xiang Q, Cheng F, Lang D (2016) Hierarchical layered WS2/Graphene-modified CdS nanorods for efficient photocatalytic hydrogen evolution. ChemSusChem 9:996–1002

    Article  CAS  Google Scholar 

  • Xie Q, Dai Z, Huang W, Liang J, Jiang C, Qian YT (2005) Synthesis of ferromagnetic single-crystalline cobalt nanobelts via a surfactant-assisted hydrothermal reduction process. Nanotechnology 16:2958–2962

    Article  CAS  Google Scholar 

  • Yamakov V, Wolf D, Phillpot S, Mukherjee A, Gleiter H (2004) Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat Mater 3:43–47

    Article  CAS  Google Scholar 

  • Yakobson BI, Smalley RE (1997) Fullerene nanotubes: C1,000,000 and beyond: some unusual new moleculeslong, hollow fibers with tantalizing electronic and mechanical properties-have joined diamonds and graphite in the carbon family. Am Sci 85:325

    Google Scholar 

  • Yu JG, Wang WG, Cheng B, Su BL (2009) Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment. J Phys Chem C 113:6743–6750

    Article  CAS  Google Scholar 

  • Yuan YJ, Chen DQ, Huang YW, Yu ZT, Zhong JS, Chen TT, Tu WG, Guan ZJ, Cao DP (2016) MoS2 nanosheet-modified CuInS2 photocatalyst for visible-light-driven hydrogen production from water. ChemSusChem 9:1003–1009

    Article  CAS  Google Scholar 

  • Yue X, Yi S, Wang R, Zhang Z, Qiu S (2016) Cadmium sulfide and nickel synergetic co-catalysts supported on graphitic carbon nitride for visible-light-driven photocatalytic hydrogen evolution. Sci Rep 6:22268–22269

    Article  CAS  Google Scholar 

  • Zhang H, Lv XJ, Li YM, Wang Y, Li JH (2010) P25-Graphene composite as a high performance photocatalyst. ACS Nano 4:380–386

    Article  CAS  Google Scholar 

  • Zhang J, Jin X, Morales-Guzman PI, Yu X, Liu H, Zhang H, Razzari L, Claverie JP (2016a) Engineering the absorption and field enhancement properties of Au-TiO2 nanohybrids via whispering gallery mode resonances for photocatalytic water splitting. ACS Nano 10:4496–4503

    Article  CAS  Google Scholar 

  • Zhang G, Lan ZA, Lin L, Lin S, Wang X (2016b) Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem Sci 7:3062–3066

    Article  CAS  Google Scholar 

  • Zhao J, Wang X, Chen R, Li L (2005) Synthesis of thin films of barium titanate and barium strontium titanate nanotubes on titanium substrates. Mater Lett 59:2329

    Article  CAS  Google Scholar 

  • Zhao J, Yan X, Zhao N, Li X, Lu B, Zhang X, Yu H (2018) Cocatalyst designing: a binary noble-metal-free cocatalyst system consisting of ZnIn2S4 and In(OH)3 for efficient visible-light photocatalytic water splitting. RSC Adv 8:4979–4986

    Article  CAS  Google Scholar 

  • Zhu Y, Zheng H, Li Y, Gao L, Yang Z, Qian YT (2003) Synthesis of ag dendritic nanostructures by using anisotropic nickel nanotubes. Mater Res Bull 38:1829–1834

    Article  CAS  Google Scholar 

  • Zhu Z, Chen JY, Su KY, Wu RJ (2016) Efficient hydrogen production by water-splitting over Pt-deposited C-HS-TiO2 hollow spheres under visible light. J Taiwan Inst Chem Eng 60:222–228

    Article  CAS  Google Scholar 

  • Zhu M, Sun Z, Fujitsuka M, Majima T (2018) Z-scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light. Angew Chem Int Ed Engl 57:2160–2164

    Article  CAS  Google Scholar 

  • Zou ZG, Ye JH, Sayama K, Arakawa H (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414:625–627

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, G.P., Singh, N., Dey, R.K., Prasad, K. (2018). Hydrothermal Synthesis of Hybrid Nanoparticles for Future Directions of Renewal Energy Applications. In: Prasad, R., Jha, A., Prasad, K. (eds) Exploring the Realms of Nature for Nanosynthesis. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-99570-0_14

Download citation

Publish with us

Policies and ethics