Skip to main content

Nonparametric Estimation of a Hazard Rate Function with Right Truncated Data

  • Chapter
  • First Online:
New Frontiers of Biostatistics and Bioinformatics

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

Abstract

Left truncation and right truncation coexist in a truncated sample. Earlier researches focused on left truncation. Lagakos et al. (Biometrika 75:515–523, 1988) proposed to transform right truncated data to left truncated data and then apply the methods developed for left truncation. Interpretation of survival quantities, such as the hazard rate function, in reverse-time is not natural. Though it is most interpretable, researchers seldom use the forward-time hazard function. In this book chapter we studied the nonparametric inference for the hazard rate function with right truncated data. Kernel smoothing techniques were used to get smoothed estimates of hazard rates. Three commonly used kernels, uniform, Epanechnikov, and biweight kernels were applied on the AIDS data to illustrate the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen, P. K., Borgan, Ø., Gill, R. D., & Keiding. N. (1993). Statistical models based on counting processes. New York: Springer.

    Book  Google Scholar 

  • Chen, K., Chao, M. T., & Lo, S. H. (1995). On strong uniform consistency of the Lynden-Bell estimator for truncated Data. The Annals of Statistics,23, 440–449.

    Article  MathSciNet  Google Scholar 

  • Chi, Y., Tsai, W. Y., & Chiang, C. L. (2007). Testing the equality of two survival functions with right truncated data. Statistics in Medicine, 26, 812–827.

    Article  MathSciNet  Google Scholar 

  • Finkelstein, D. M., Moore, D. F., & Schoenfeld, D. A. (1993). A proportional hazards model for truncated AIDS data. Biometrics, 49, 731–740.

    Article  MathSciNet  Google Scholar 

  • Gasser, T. H., & Muller, H. G. (1979). Kernel estimation of regression functions. In: T. Gasser & M. Rosenblatt (Eds.), Smoothing techniques for curve estimation: Vol. 757. Lecture notes in mathematics (pp. 23–68). Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Gross, S. T., & Huber-Carol, C. (1992). Regression models for truncated survival data. Scandinavian Journal of Statistics, 19, 193–213.

    MathSciNet  MATH  Google Scholar 

  • Gurler, U., Stute, W., & Wang, J. L. (1993). Weak and strong quantile representations for randomly truncated data with applications. Statistics and Probability Letters, 17, 139–148.

    Article  MathSciNet  Google Scholar 

  • Kalbfleisch, J. D., & Lawless, J. F. (1989). Inference based on retrospective ascertainment: An analysis of the data on transfusion-related AIDS. Journal of the American Statistical Association, 84, 360–372.

    Article  MathSciNet  Google Scholar 

  • Kalbfleisch, J. D., & Lawless, J. F. (1991). Regression models for right truncated data with applications to AIDS incubation times and reporting lags. Statistica Sinica, 1, 19–32.

    MATH  Google Scholar 

  • Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53, 457–481.

    Article  MathSciNet  Google Scholar 

  • Keiding, N., & Gill, R. D. (1990). Random truncation models and Markov process. The Annals of Statistics, 18, 582–602.

    Article  MathSciNet  Google Scholar 

  • Klein, J. P., & Moeschberger, M. L. (2003). Survival analysis: Techniques for censored and truncated data. New York: Springer.

    MATH  Google Scholar 

  • Klein, J. P., & Zhang, M. J. (1996). Statistical challenges in comparing chemotherapy and bone-marrow transplantation as a treatment for leukemia. In N. P. Jewell et al. (Eds.) Life data: Models in reliability and survival analysis (pp. 175–185). New York: Springer.

    Chapter  Google Scholar 

  • Lagakos, S. W., Barraj, L. M., & Gruttola, V. (1988). Nonparametric analysis of truncated survival data with applications to AIDS. Biometrika, 75, 515–523.

    Article  MathSciNet  Google Scholar 

  • Lai, T. L., & Ying, Z. (1991). Estimating a distribution function with truncated and censored data. The Annals of Statistics, 19, 417–442.

    Article  MathSciNet  Google Scholar 

  • Ramlau-Hansen, H. (1983). Smoothing counting process intensities by means of kernel functions. The Annals of Statistics, 11, 453–466.

    Article  MathSciNet  Google Scholar 

  • Shen, P. (2010). A class of semiparametric rank-based tests for right-truncated data. Statistics and Probability Letters, 80, 1459–1466.

    Article  MathSciNet  Google Scholar 

  • Uzunogullari, U., & Wang, J. L. (1992). A comparison of hazard rate estimators for left truncated and right censored data. Biometrika, 79, 297–310.

    Article  MathSciNet  Google Scholar 

  • Wang, J. L. (2005). Smoothing hazard rate. In Encyclopedia of biostatistics (2nd ed., pp. 4986–4997). New York: Wiley.

    Google Scholar 

  • Wang, M. C., Jewell, N. P., & Tsai, W. Y. (1986). Asymptotic properties of the product limit estimate under random truncation. The Annals of Statistics, 14, 1597–1605.

    Article  MathSciNet  Google Scholar 

  • Watson, G. S., & Leadbetter, M. R. (1964). Hazard analysis I. Biometrika, 51, 175–184.

    Article  MathSciNet  Google Scholar 

  • Woodroofe, M. (1985). Estimating a distribution function with truncated data. The Annals of Statistics, 13, 163–177.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This book chapter has been greatly improved following the comments of two referees. The authors appreciate referees’ insightful suggestions on the contents of this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haci Akcin .

Editor information

Editors and Affiliations

Appendix

Appendix

Asymptotic properties of kernel estimator of intensity were established by Ramlau-Hansen (1983). In this study we exploratively investigate the limiting distribution of \(\widehat {\alpha }(t)\). In the following context, “≈” indicates asymptotic equivalence. Note that \((nb)^{1/2}[\widehat {\alpha }(t)-\alpha ^s(t)]\) can be expressed as

$$\displaystyle \begin{aligned} (nb)^{1/2}[\widehat{\alpha}(t)-\alpha^s(t)]=\frac{(nb)^{1/2}}{b}\int_0^\tau K\left(\frac{t-u}{b}\right)\left[\frac{-\widehat{G}(u)}{1-\widehat{G}(u)}d(\widehat{A}^*-A^*)(u)\right] \end{aligned}$$
$$\displaystyle \begin{aligned} -\frac{(nb)^{1/2}}{b}\int_0^\tau K\left(\frac{t-u}{b}\right) \left(\frac{\widehat{G}(u)}{1-\widehat{G}(u-)}-\frac{G(u)}{1-G(u-)}\right)dA^*(u) \end{aligned}$$

For the first term on the right-hand side of the above equation, it can be shown that

$$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle &\displaystyle \frac{(nb)^{1/2}}{b}\int_0^\tau K\left(\frac{t-u}{b}\right)\frac{-\widehat{G}(u)}{1-\widehat{G}(u-)}d(\widehat{A}^*-A^*)(u)\\ &\displaystyle \approx&\displaystyle \sqrt{\frac{n}{b}}\int_\tau^0 K\left(\frac{t-u}{b}\right)\frac{G(u)}{1-G(u-)}d(\widehat{A}^*-A^*)(u)\\ &\displaystyle =&\displaystyle \sqrt{\frac{n}{b}}\int_\tau^0 K\left(\frac{t-u}{b}\right)\frac{G(u)}{1-G(u-)} J(u) \frac{d\bar M^*(u)}{\bar{Y}(u)} \end{array} \end{aligned} $$

To investigate the second term on the right-hand side, we first consider the Taylor series expansion,

$$\displaystyle \begin{aligned}\frac{\widehat{G}(u)}{1-\widehat{G}(u^-)}-\frac{G(u)}{1-G(u-)}\approx \frac{d}{dA^*(u)}\left(\frac{G(u)}{1-G(u-)}\right) (\widehat{A}^*-A^*)(u).\end{aligned}$$

Then we will have

$$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle &\displaystyle \frac{(nb)^{1/2}}{b}\int_0^\tau K\left(\frac{t-u}{b}\right)\left[-\left(\frac{\widehat{G}(u)}{1-\widehat{G}(u-)}-\frac{G(u)}{1-G(u-)}\right)dA^*(u)\right]\\ {} &\displaystyle \approx&\displaystyle \sqrt{\frac{n}{b}}\int_0^\tau K\left(\frac{t-u}{b}\right)\left[-d\left(\frac{G(u)}{1-G(u-)}\right) (\widehat{A}^*-A^*)(u)\right]\\ {} &\displaystyle =&\displaystyle \sqrt{\frac{n}{b}}\int_0^\tau K\left(\frac{t-u}{b}\right)\left[-d\left(\frac{G(u)}{1-G(u-)}\right) \int_\infty^u J(x)\frac{d\bar M^*(x)}{\bar{Y}(x)}\right]\\ {} &\displaystyle =&\displaystyle \sqrt{\frac{n}{b}}\int_\tau^0\left[-\int_0^u K\left(\frac{t-y}{b}\right) d\left(\frac{G(y)}{1-G(y-)}\right) \right]J(x)\frac{d\bar M^*(x)}{\bar{Y}(x)}. \end{array} \end{aligned} $$

Combining the above results, \((nb)^{1/2}[\widehat {\alpha }_n(t)-\alpha _n^s(t)]\) is asymptotically equal to

$$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle &\displaystyle \sqrt{\frac{1}{nb}}\int_\tau^0 \left[ K\left(\frac{t-u}{b}\right)\frac{G(u)}{1-G(u-)}\right.\\ {} &\displaystyle &\displaystyle \left.-\int_0^u K\left(\frac{t-y}{b}\right) d\left(\frac{G(y)}{1-G(y-)}\right) \right]J(u) \frac{d\bar M^*(u)}{\bar{Y}(u)/n}. \end{array} \end{aligned} $$
(22.15)

Through the martingale central limit theorem, when n →, b → 0, nb →, \((nb)^{1/2}[\widehat {\alpha }(t)-\alpha ^s(t)]\) converges in distribution to a normal random variable with mean zero and the following variance function,

$$\displaystyle \begin{aligned}\frac{1}{b}\int_\tau^0 \left[ K\left(\frac{t-u}{b}\right)\frac{G(u)}{1-G(u-)}-\int_0^u K\left(\frac{t-x}{b}\right) d\left(\frac{G(x)}{1-G(x-)}\right) \right]^2 \frac{\alpha(u)du}{y(u)}.\end{aligned}$$

In addition, it needs to prove that \((nb)^{1/2}[\alpha _n^s(t)-\alpha (t)]\) is asymptotically negligible. Some regularity conditions for establishing such a result can be found in Ramlau-Hansen (1983, §4). We do not investigate this topic here.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akcin, H., Zhang, X., Zhao, Y. (2018). Nonparametric Estimation of a Hazard Rate Function with Right Truncated Data. In: Zhao, Y., Chen, DG. (eds) New Frontiers of Biostatistics and Bioinformatics. ICSA Book Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-99389-8_22

Download citation

Publish with us

Policies and ethics