Skip to main content

On the Landmark Survival Model for Dynamic Prediction of Event Occurrence Using Longitudinal Data

  • Chapter
  • First Online:
New Frontiers of Biostatistics and Bioinformatics

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

Abstract

In longitudinal cohort studies, participants are often monitored through periodic clinical visits until the occurrence of a terminal clinical event. A question of interest to both scientific research and clinical practice is to predict the risk of the terminal event at each visit, using the longitudinal prognostic information collected up to the visit. This problem is called the dynamic prediction: a real-time, personalized prediction of the risk of a future adverse clinical event with longitudinally measured biomarkers and other prognostic information. An important method for dynamic prediction is the landmark Cox model and variants. A fundamental difficulty in the current methodological research of this kind of models is that it is unclear whether there exists a joint distribution of the longitudinal and time-to-event data that satisfies the model assumptions. As a result, this model is often viewed as a working model instead of a probability distribution, and its statistical properties are often studied using data simulated from shared random effect models, where the landmark model works under misspecification. In this paper, we demonstrate that a joint distribution of longitudinal and survival data exists that satisfy the modeling assumptions without additional restrictions, and propose an algorithm to generate data from this joint distribution. We further generalize the results to the more flexible landmark linear transformation models that include the landmark Cox model as a special case. These results facilitate future theoretical and numerical research on landmark survival models for dynamic prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blanche, P., Proust-Lima, C., Loubère, L., Berr, C., Dartigues, J. F., & Jacqmin-Gadda, H. (2015). Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks. Biometrics, 71(1), 102–113.

    Article  MathSciNet  Google Scholar 

  • Cheng, S. C., Wei, L. J., & Ying, Z. (1995). Analysis of transformation models with censored data. Biometrika, 82(4), 835–845.

    Article  MathSciNet  Google Scholar 

  • Diggle, P. J., Heagerty, P., Liang, K.-Y., & Zeger, S. L. (2002). Analysis of longitudinal data (2nd ed.). Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Faderl, S., Talpaz, M., Estrov, Z., O’Brien, S., Kurzrock, R., & Kantarjian, H. M. (1999). The biology of chronic myeloid leukemia. New England Journal of Medicine, 341(3), 164–172.

    Article  Google Scholar 

  • Gorre, M. E., & Sawyers, C. L. (2002). Molecular mechanisms of resistance to STI571 in chronic myeloid leukemia. Current Opinion in Hematology, 9(4), 303–307.

    Article  Google Scholar 

  • Hochhaus, A., Kantarjian, H. M., Baccarani, M., Lipton, J. H., Apperley, J. F., Druker, B. J., et al. (2007). Dasatinib induces notable hematologic and cytogenetic responses in chronic-phase chronic myeloid leukemia after failure of imatinib therapy. Blood, 109(6), 2303–2309.

    Article  Google Scholar 

  • Huang, X., Yan, F., Ning, J., Feng, Z., Choi, S. & Cortes, J. (2005). A two-stage approach for dynamic prediction of time-to-event distributions. Statistics in Medicine, 35(13), 2167–2182.

    Article  MathSciNet  Google Scholar 

  • Jewell, N. P., & Nielsen, J. P. (1993). A framework for consistent prediction rules based on markers. Biometrika, 80(1), 153–164.

    Article  MathSciNet  Google Scholar 

  • Kalbfleisch, J. D., & Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data (2nd ed.). Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Li, L., Greene, T., & Hu, B. (2018). A simple method to estimate the time-dependent receiver operating characteristic curve and the area under the curve with right censored data. Stat Methods Med Res. 27(8), 2264–2278.

    Article  MathSciNet  Google Scholar 

  • Li, L., Luo, S., Hu, B., & Greene, T. (2017). Dynamic prediction of renal failure using longitudinal biomarkers in a cohort study of chronic kidney disease. Stat Biosci. 9(2), 357–378.

    Article  Google Scholar 

  • Maziarz, M., Heagerty, P., Cai, T., & Zheng, Y. (2016). On longitudinal prediction with time-to-event outcome: Comparison of modeling options. Biometrics Epub ahead of print, https://doi.org/10.1111/biom.12562.

    Article  MathSciNet  Google Scholar 

  • Quintás-Cardama, A., Choi, S., Kantarjian, H., Jabbour, E., Huang, X., & Cortes, J. (2014). Predicting outcomes in patients with chronic myeloid leukemia at any time during tyrosine kinase inhibitor therapy. Clinical Lymphoma Myeloma and Leukemia, 14(4), 327–334.

    Article  Google Scholar 

  • Rizopoulos, D. (2011). Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. Biometrics, 67(3), 819–829.

    Article  MathSciNet  Google Scholar 

  • Rizopoulos, D., Hatfield, L. A., Carlin, B. P., & Takkenberg, J. J. M. (2014). Combining dynamic predictions from joint models for longitudinal and time-to-event data using Bayesian model averaging. Journal of the American Statistical Association, 109(508), 1385–1397.

    Article  MathSciNet  Google Scholar 

  • Sawyers, C. L. (1999). Chronic myeloid leukemia. New England Journal of Medicine, 340(17), 1330–1340.

    Article  Google Scholar 

  • Steyerberg, E. W. (2009). Clinical prediction models: A practical approach to development, validation, and updating. New York: Springer.

    Book  Google Scholar 

  • Taylor, J. M., Park, Y., Ankerst, D. P., Proust-Lima, C., Williams, S., Kestin, L., et al. (2013). Real-time individual predictions of prostate cancer recurrence using joint models. Biometrics, 69(1), 206–213.

    Article  MathSciNet  Google Scholar 

  • van Houwelingen, H. C. (2007). Dynamic prediction by landmarking in event history analysis. Scandinavian Journal of Statistics, 34(1), 70–85.

    Article  MathSciNet  Google Scholar 

  • van Houwelingen, H. C., & Putter H. (2008). Dynamic predicting by landmarking as an alternative for multi-state modeling: an application to acute lymphoid leukemia data. Lifetime Data Analysis, 14(4), 447–463.

    Article  MathSciNet  Google Scholar 

  • van Houwelingen, H., & Putter, H. (2011). Dynamic prediction in clinical survival analysis. Boca Raton, FL: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Wong, S. F. (2009). New dosing schedules of dasatinib for CML and adverse event management. Journal of Hematology & Oncology, 2(1), 10.

    Article  Google Scholar 

  • Yan, F., Lin, X., & Huang, X. (2017). Dynamic prediction of disease progression for leukemia patients by functional principal component analysis of longitudinal expression levels of an oncogene. The Annals of Applied Statistics, 11(3), 1649–1670.

    Article  MathSciNet  Google Scholar 

  • Zheng, Y. Y., & Heagerty, P. J. (2005). Partly conditional survival models for longitudinal data. Biometrics, 61(2), 379–391.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this research by the National Institutes of Health (grant 5P30CA016672 and 5U01DK103225) and MD Anderson Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, Y., Li, L., Huang, X. (2018). On the Landmark Survival Model for Dynamic Prediction of Event Occurrence Using Longitudinal Data. In: Zhao, Y., Chen, DG. (eds) New Frontiers of Biostatistics and Bioinformatics. ICSA Book Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-99389-8_19

Download citation

Publish with us

Policies and ethics