Skip to main content

Meiofauna: An Inconspicuous but Important Player in Mudflat Ecology

  • Chapter
  • First Online:

Part of the book series: Aquatic Ecology Series ((AQEC,volume 7))

Abstract

Due to their inconvenient size and nature (too small for easy whole-organism work; too large for, and not amenable to, most microbiology techniques), meiofauna tend to perpetually slip through the cracks of mainstream marine ecology. The resulting knowledge gap is probably as considerable as the ecological importance of this group. In this chapter we first present the available techniques for sampling, extraction, and preservation of mudflat meiofauna, and then consider their spatial and temporal dynamics. Although their trophic ecology is obviously of prime importance, meiofauna influence the mudflat ecosystem through many other types of interactions which, at least in part, result from their high taxonomic and functional diversity. These include cryptobioturbation, which has far-reaching effects on sediment characteristics and stability; microbial grazing and fecal pellet production, which impact mudflat microbial ecology and nutrient cycling; and meiofauna-macrofauna interactions, which evolve as the macrofauna grow and develop. An increased awareness of the roles of meiofauna is essential to a comprehensive understanding of mudflat ecology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aarnio K, Bonsdorff E, Norkko A (1998) Role of Halicryptus spinulosus (Priapulida) in structuring meiofauna and settling macrofauna. Mar Ecol Prog Ser 163:145–153

    Article  Google Scholar 

  • Albuquerque EF, Pinto APB, Perez AQ, Veloso VG (2007) Spatial and temporal changes in interstitial meiofauna on a sandy ocean beach of South America. Braz J Oceanogr 55:121–131

    Article  Google Scholar 

  • Alkemade R, Wielemaker A, Hemminga MA (1992a) Stimulation of decomposition of Spartina anglica leaves by the bacterivorous marine nematode Diplolaimelloides bruciei (Monhysteridae). J Exp Mar Biol Ecol 159:267–278

    Article  Google Scholar 

  • Alkemade R, Wielemaker A, de Jong SA, Sandee AJJ (1992b) Experimental evidence for the role of bioturbation by the marine nematode Diplolaimella dievengatensis in stimulating the mineralization of Spartina anglica detritus. Mar Ecol Prog Ser 90:149–155

    Article  Google Scholar 

  • Aller RC, Aller JY (1992) Meiofauna and solute transport in marine muds. Limnol Oceanogr 37:1018–1033

    Article  CAS  Google Scholar 

  • Armonies W, Hellwig M (1986) Quantitative extraction of living meiofauna from marine and brackish muddy sediments. Mar Ecol Prog Ser 29:37–43

    Article  Google Scholar 

  • Armonies W, Reise K (2000) Faunal diversity across a sandy shore. Mar Ecol Prog Ser 196:49–57

    Article  Google Scholar 

  • Austen MC, Warwick RM (1995) Effects of manipulation of food-supply on estuarine meiobenthos. Hydrobiologia 311:175–184

    Article  Google Scholar 

  • Austen MC, Widdicombe S (1998) Experimental evidence of effects of the heart urchin Brissopsis lyrifera on associated subtidal meiobenthic nematode communities. J Exp Mar Biol Ecol 222:219–238

    Article  Google Scholar 

  • Austen MC, Warwick RM, Ryan KP (1993) Astomonema southwardorum sp. nov. a gutless nematode dominant in a methane seep area in the North Sea. J Mar Biol Assoc UK 73:627–634

    Article  Google Scholar 

  • Austen MC, Widdicombe S, Villano-Pitacco N (1998) Effects of biological disturbance on diversity and structure of meiobenthic nematode communities. Mar Ecol Prog Ser 174:233–246

    Article  Google Scholar 

  • Azovsky AI, Saburova MA, Chertoprud ES, Polikarpov IG (2005) Selective feeding of littoral harpacticoids on diatom algae: hungry gourmands? Mar Biol 148:327–337

    Article  Google Scholar 

  • Baermann G (1917) Eine einfache Methode zur Auffindung von Ankylostomum- (Nematoden)-Larven in Erdproben. Geneeskundig Laboratorium Feestbundel, Weltevreden Batavia, pp 41–47

    Google Scholar 

  • Barnett BE (1980) A physico-chemical method for the extraction of marine and estuarine benthos from clays and resistant muds. J Mar Biol Assoc U K 60:255

    Article  Google Scholar 

  • Bayer C, Heindl NR, Rinke C, Lucker S, Ott JA, Bulgheresi S (2009) Molecular characterization of the symbionts associated with marine nematodes of the genus Robbea. Environ Microbiol Rep 1:136–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedino JH (2003) Embalming chemistry: glutaraldehyde versus formaldehyde. Champ Expand Enc Mortu Pract 649:2614–2632

    Google Scholar 

  • Beknazarova M, Millsteed S, Robertson G, Whiley H, Ross K (2017) Validation of DESS as a DNA preservation method for the detection of Strongyloides spp. in canine feces. Int J Environ Res Public Health 14:e624

    Article  PubMed  CAS  Google Scholar 

  • Bernhard JM, Ostermann DR, Williams DS, Blanks JK (2006) Comparison of two methods to identify live benthic Foraminifera: a test between Rose Bengal and CellTracker Green with implications for stable isotope paleoreconstructions. Paleoceanography 21:1–8

    Article  Google Scholar 

  • Blanchard GF (1990) Overlapping microscale dispersion patterns of meiofauna and microphytobenthos. Mar Ecol Prog Ser 68:101–111

    Article  Google Scholar 

  • Boaden PJS, Platt HM (1971) Daily migration patterns in an intertidal meiobenthic community. Thalass Jugosl 7:1–12

    Google Scholar 

  • Boeckner MJ, Sharma J, Proctor HC (2009) Revisiting the meiofauna paradox: dispersal and colonization of nematodes and other meiofaunal organisms in low- and high-energy environments. Hydrobiologia 624:91–106

    Article  Google Scholar 

  • Boldina I, Beninger PG, Le Coz M (2014) Effect of long-term mechanical perturbation on intertidal soft-bottom meiofunal community spatial structure. J Sea Res 85:85–91

    Article  Google Scholar 

  • Bonaglia S, Nascimento FJA, Bartoli M, Klawonn I, Bruchert V (2014) Meiofauna increases bacterial denitrification in marine sediments. Nat Commun 5:e5133

    Article  CAS  Google Scholar 

  • Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol Evol 14:224–228

    Article  CAS  PubMed  Google Scholar 

  • Bouillon S, Connolly RM, Lee SY (2008) Organic matter exchange and cycling in mangrove ecosystems: recent insights from stable isotope studies. J Sea Res 59:44–58

    Article  CAS  Google Scholar 

  • Braeckman U, Provoost P, Moens T, Soetaert K, Middelburg JJ, Vincx M, Vanaverbeke J (2011a) Biological vs. physical mixing effects on benthic food web dynamics. PLoS One 6:e18078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braeckman U, Van Colen C, Soetaert K, Vincx M, Vanaverbeke J (2011b) Contrasting macrobenthic activities differentially affect nematode density and diversity in a shallow subtidal marine sediment. Mar Ecol Prog Ser 422:179–191

    Article  Google Scholar 

  • Braeckman U, Vanaverbeke J, Vincx M, Van Oevelen D, Soetaert K (2013) Meiofauna metabolism in suboxic sediments: currently overestimated. PLoS One 8:e59289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandes JA, Devol AH, Deutsch C (2007) New developments in the marine nitrogen cycle. Chem Rev 107:577–589

    Article  CAS  PubMed  Google Scholar 

  • Buffan-Dubau E, Carman KR (2000) Diel feeding behaviour of meiofauna and their relationships with microalgal resources. Limnol Oceanogr 45:381–395

    Article  CAS  Google Scholar 

  • Buffan-Dubau E, deWit R, Castel J (1996) Feeding selectivity of the harpacticoid copepod Canuella perplexa in benthic muddy environments demonstrated by HPLC analyses of chlorin and carotenoid pigments. Mar Ecol Prog Ser 137:71–82

    Article  CAS  Google Scholar 

  • Burgess B (2001) An improved protocol for separating meiofauna from sediments using colloidal silica sols. Mar Ecol Prog Ser 214:161–165

    Article  Google Scholar 

  • Burgin AJ, Hamilton SK (2007) Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front Ecol Environ 5:89–96

    Article  Google Scholar 

  • Callaway R (2006) Tube worms promote community change. Mar Ecol Prog Ser 308:49–60

    Article  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    Article  CAS  PubMed  Google Scholar 

  • Carpentier A, Como S, Dupuy C, Lefrancois C, Feunteun E (2014) Feeding ecology of Liza spp. in a tidal flat: evidence of the importance of primary production (biofilm) and associated meiofauna. J Sea Res 92:86–91

    Article  Google Scholar 

  • Caulle C, Koho KA, Mojtahid M, Reichart GJ, Jorissen FJ (2014) Live (Rose Bengal stained) foraminiferal faunas from the northern Arabian Sea: faunal succession within and below the OMZ. Biogeosciences 11:1155–1175

    Article  Google Scholar 

  • Chandler GT, Fleeger JW (1987) Facilitative and inhibitory interactions among estuarine meiobenthic harpacticoid copepods. Ecology 68:1906–1919

    Article  PubMed  Google Scholar 

  • Cleven EJ (1999) An improved method for taking cores in sandy sediments. Arch Hydrobiol 147:65–72

    Article  CAS  Google Scholar 

  • Cnudde C (2014) Trophic ecology of intertidal harpacticoid copepods, with emphasis on their interactions with bacteria. PhD thesis, Ghent University, 209 p

    Google Scholar 

  • Cnudde C, Clavano CJS, Moens T, Willems A, De Troch M (2013a) Structural and functional patterns of active bacterial communities during aging of harpacticoid copepod fecal pellets. Aquat Microb Ecol 71:25–42

    Article  Google Scholar 

  • Cnudde C, Moens T, Hoste B, Willems A, De Troch M (2013b) Limited feeding on bacteria by two intertidal benthic copepod species as revealed by trophic biomarkers. Environ Microbiol Rep 5:301–309

    Article  CAS  PubMed  Google Scholar 

  • Cnudde C, Moens T, Willems A, De Troch M (2013c) Substrate-dependent bacterivory by intertidal benthic copepods. Mar Biol 160:327–341

    Article  Google Scholar 

  • Cnudde C, Moens T, Werbrouck E, Lepoint G, Van Gansbeke D, De Troch M (2015) Trophodynamics of estuarine intertidal harpacticoid copepods based on stable isotope composition and fatty acid profiles. Mar Ecol Prog Ser 524:225–239

    Article  CAS  Google Scholar 

  • Commito JA, Tita G (2002) Differential dispersal rates in an intertidal meiofauna assemblage. J Exp Mar Biol Ecol 268:237–256

    Article  Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Ecology controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015

    Article  CAS  PubMed  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs – high diversity of trees and corals is maintained only in a non-equilibrium state. Science 199:1302–1310

    Article  CAS  PubMed  Google Scholar 

  • Couch CA (1988) A procedure for extracting large numbers of debris-free, living nematodes from muddy marine sediments. Trans Am Microsc Soc 107:96–100

    Article  Google Scholar 

  • Coull BC (1985) Long-term variability of estuarine meiobenthos: an 11 year study. Mar Ecol Prog Ser 24:205–218

    Article  Google Scholar 

  • Coull BC (1986) Long-term variability of meiobenthos: value, synopsis, hypothesis generation and predictive modelling. Hydrobiologia 142:271–279

    Article  Google Scholar 

  • Coull BC (1990) Are members of the meiofauna food for higher trophic levels? Trans Am Microsc Soc 109:233–246

    Article  Google Scholar 

  • Coull BC (1999) Role of meiofauna in estuarine soft-bottom habitats. Aust J Ecol 24:327–343

    Article  Google Scholar 

  • Coull BC, Chandler GT (1992) Pollution and meiofauna: field, laboratory, and mesocosm studies. Oceanogr Mar Biol Annu Rev 30:191–271

    Google Scholar 

  • Creer S, Deiner K, Frey S, Porazinska D, Taberlet P, Thomas WK, Potter C, Bik HM (2016) The ecologist’s field guide to sequence-based identification of biodiversity. Methods Ecol Evol 7:1008–1018

    Article  Google Scholar 

  • Cullen DJ (1973) Bioturbation of superficial marine sediments by interstitial meiobenthos. Nature 242:323–324

    Article  Google Scholar 

  • D’Hondt A-S, Stock W, Blommaert L, Moens T, Sabbe K (2018) Nematodes stimulate biomass accumulation in a multispecies diatom biofilm. Mar Environ Res. https://doi.org/10.1016/j.marenvres.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  • Dahms H-U, Qian P-Y (2006) Kin recognition during intraspecific predation by Harpacticus sp. (Copepoda: Harpacticoida). Zool Stud 45:395–403

    Google Scholar 

  • Dahms H-U, Harder T, Qian P-Y (2007) Selective attraction and reproductive performance of a harpacticoid copepod in a response to biofilms. J Exp Mar Biol Ecol 341:228–238

    Article  Google Scholar 

  • Danovaro R, Scopa M, Gambi C, Fraschetti S (2007) Trophic importance of subtidal metazoan meiofauna: evidence from in situ exclusion experiments on soft and rocky substrates. Mar Biol 152:339–350

    Article  Google Scholar 

  • Dashfield SL, Somerfield PJ, Widdicombe S, Austen MC, Nimmo M (2008) Impacts of ocean acidification and burrowing urchins on within-sediment pH profiles and subtidal nematode communities. J Exp Mar Biol Ecol 365:46–52

    Article  CAS  Google Scholar 

  • de Jonge VN, Bouwman LA (1977) A simple density separation technique for quantitative isolation of meiobenthos using the colloidal silica Ludox-TM. Mar Biol 42:143–148

    Article  Google Scholar 

  • De Ley P, Mundo-Ocampo M (2004) The cultivation of nematodes. In: Chen ZX, Chen SY, Dickson DW (eds) Nematology: advances and perspectives, vol 1. Tsinghua University Press, Tsinghua, China, pp 541–619

    Google Scholar 

  • De Meester N (2016) Unravelling coexistence of cryptic Litoditis marina species. PhD thesis, Ghent University, Belgium, 322 p

    Google Scholar 

  • De Meester L, Gomez A, Okamura B, Schwenk K (2002) The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecol Intern J Ecol 23:121–135

    Article  Google Scholar 

  • De Meester N, Derycke S, Bonte D, Moens T (2011) Salinity effects on the coexistence of cryptic species: a case study on marine nematodes. Mar Biol 158:2717–2726

    Article  Google Scholar 

  • De Meester N, Derycke S, Rigaux A, Moens T (2015a) Active dispersal is differentially affected by inter- and intraspecific competition in closely related nematode species. Oikos 124:561–570

    Article  Google Scholar 

  • De Meester N, Dos Santos GAP, Rigaux A, Valdez Y, Derycke S, Moens T (2015b) Daily temperature fluctuations alter interactions between closely related species of marine nematodes. PLoS One 10:e0131625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Meester N, Gingold R, Rigaux A, Derycke S, Moens T (2016) Cryptic diversity and ecosystem functioning: a complex tale of differential effects on decomposition. Oecologia 182:559–571

    Article  PubMed  Google Scholar 

  • De Mesel I, Derycke S, Swings J, Vincx M, Moens T (2003) Influence of bacterivorous nematodes on the decomposition of cordgrass. J Exp Mar Biol Ecol 296:227–242

    Article  Google Scholar 

  • De Mesel I, Derycke S, Moens T, Van der Gucht K, Vincx M, Swings J (2004) Top-down impact of bacterivorous nematodes on the bacterial community structure: a microcosm study. Environ Microbiol 6:733–744

    Article  PubMed  Google Scholar 

  • De Mesel I, Derycke S, Swings J, Vincx M, Moens T (2006) Role of nematodes in decomposition processes: does within-trophic group diversity matter? Mar Ecol Prog Ser 321:157–166

    Article  Google Scholar 

  • De Troch M, Fiers F, Vincx M (2003) Niche segregation and habitat specialisation of harpacticoid copepods in a tropical seagrass bed. Mar Biol 142:345–355

    Article  Google Scholar 

  • De Troch M, Steinarsdóttir MB, Chepurnov V, Ólafsson E (2005) Grazing on diatoms by harpacticoid copepods: species-specific density-dependent uptake and microbial gardening. Aquat Microb Ecol 39:135–144

    Article  Google Scholar 

  • De Troch M, Chepurnov V, Gheerardyn H, Vanreusel A, Olafsson E (2006) Is diatom size selection by harpacticoid copepods related to grazer body size? J Exp Mar Biol Ecol 332:1–11

    Article  Google Scholar 

  • De Troch M, Cnudde C, Vyverman W, Vanreusel A (2009) Increased production of faecal pellets by the benthic harpacticoid Paramphiascella fulvofasciata: importance of the food source. Mar Biol 156:469–477

    Article  Google Scholar 

  • De Troch M, Cnudde C, Willems A, Moens T, Vanreusel A (2010) Bacterial colonization on faecal pellets of harpacticoid copepods and on their diatom food. Microb Ecol 60:581–591

    Article  PubMed  Google Scholar 

  • De Troch M, Vergaerde I, Cnudde C, Vanormelingen P, Vincx M (2012) The taste of diatoms: the role of diatom growth phase characteristics and associated bacteria for grazing by the harpacticoid copepod Microarthridion littorale. Aquat Microb Ecol 67:47–58

    Article  Google Scholar 

  • Decho AW, Fleeger JW (1988) Microscale dispersion of meiobenthic copepods in response to food-resource patchiness. J Exp Mar Biol Ecol 118:229–243

    Article  Google Scholar 

  • DePatra KD, Levin LA (1989) Evidence of the passive deposition of meiofauna into fiddler crab burrows. J Exp Mar Biol Ecol 125:173–192

    Article  Google Scholar 

  • Derycke S, De Meester N, Rigaux A, Creer S, Bik H, Thomas WK, Moens T (2016) Coexisting species of the Litoditis marina complex (Nematoda) show differential resource use and have distinct microbiomes with high intraspecific variability. Mol Ecol 25:2093–2110

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos GAP (2009) Top-down and bottom-up controls on populations and assemblages of marine nematodes, and their effects on benthic ecosystem functioning: an experimental approach. PhD thesis, Ghent University, Belgium, 252 p

    Google Scholar 

  • Dos Santos GAP, Moens T (2011) Populations of two prey nematodes and their interaction are controlled by a predatory nematode. Mar Ecol Prog Ser 427:117–131

    Article  Google Scholar 

  • Dos Santos GAP, Derycke S, Fonsêca-Genevois VG, Coelho L, Correia MTS, Moens T (2009) Interactions among bacterial-feeding nematode species at different levels of food availability. Mar Biol 156:629–640

    Article  Google Scholar 

  • Du Y, Xu K, Lei Y (2009) Simultaneous enumeration of diatom, protozoa and meiobenthos from marine sediments using Ludox-QPS method. Chin J Oceanol Limnol 27:775–783

    Article  CAS  Google Scholar 

  • Dupuy C, Rossignol L, Geslin E, Pascal P-Y (2010) Predation of mudflat meio-macrofaunal metazoans by a calcareous foraminifer, Ammonia tepida (Cushman, 1926). J Foraminifer Res 40:305–312

    Article  Google Scholar 

  • Dye A (1983) Oxygen consumption by sediments in a southern African mangrove swamp. Estuar Coast Shelf Sci 17:473–478

    Article  CAS  Google Scholar 

  • Eskin RA, Coull BC (1987) Seasonal and three-year variability of meiobenthic nematode populations at two estuarine sites. Mar Ecol Prog Ser 41:295–303

    Article  Google Scholar 

  • Evrard V, Huettel M, Cook PLM, Soetaert K, Heip CHR, Middelburg JJ (2012) Importance of phytodetritus and microphytobenthos for heterotrophs in a shallow subtidal sandy sediment. Mar Ecol Prog Ser 455:13–31

    Article  CAS  Google Scholar 

  • Fan Q-H, France S, Green O, Gunawardana D, Ho W, Kumarasinghe L, et al (2016) Guide to delivering phytosanitary diagnostic services. International Plant Protection Convention, FAO

    Google Scholar 

  • Fenchel T, Riedl RJ (1970) The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms. Mar Biol 7:255–268

    Article  CAS  Google Scholar 

  • Ferris H, Venette RC, van der Meulen HR, Lau SS (1998) Nitrogen mineralization by bacterial-feeding nematodes: verification and measurement. Plant Soil 203:159–171

    Article  CAS  Google Scholar 

  • Findlay SEG (1981) Small-scale spatial distribution of meiofauna on a mud- and sandflat. Estuar Coast Shelf Sci 12:471–484

    Article  Google Scholar 

  • Findlay SEG (1982) Influence of sampling scale on apparent distribution of meiofauna on a sandflat. Estuaries 5:322–324

    Article  Google Scholar 

  • Findlay S, Tenore KR (1982) Effect of a free-living marine nematode (Diplolaimella chitwoodi) on detrital carbon mineralization. Mar Ecol Prog Ser 8:161–166

    Article  Google Scholar 

  • Folk RL, Andrews PB, Lewis DW (1970) Detrital sedimentary rock classification and nomenclature for use in New Zealand. NZ J Geol Geophys 13:937–968

    Article  Google Scholar 

  • Fonseca G, Gallucci F (2008) Direct evidence of predation in deep-sea nematodes: the case of Pontonema sp. Cah Biol Mar 49:295–297

    Google Scholar 

  • Fonseca G, Muthumbi A, Vanreusel A (2007) Species richness of the genus Molgolaimus (Nematoda) from local to ocean scale along continental slopes. Mar Ecol 28:446–459

    Article  Google Scholar 

  • Fonseca VG, Sinniger F, Gaspar JM, Quince C, Creer S, Power DM, Peck LS, Clark MS (2017) Revealing higher than expected diversity in Antarctic sediments: a metabarcoding approach. Sci Rep 7:6094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco MA, Soetaert K, Costa MJ, Vincx M, Vanaverbeke J (2008) Uptake of phytodetritus by meiobenthos using C-13 labelled diatoms and Phaeocystis in two contrasting sediments from the North Sea. J Exp Mar Biol Ecol 362:1–8

    Article  CAS  Google Scholar 

  • Frangoulis C, Christou ED, Hecq JH (2005) Comparison of marine copepod outfluxes: nature, rate, fate and role in the carbon and nitrogen cycles. Adv Mar Biol 47:253–309

    Article  CAS  PubMed  Google Scholar 

  • Frost R (1923) Stopping by woods on a snowy evening. In: Lathem EC (ed) The poetry of Robert Frost. Henry Holt, New York

    Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP et al (2004) Nitrogen cycles: past, presence, and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  • Gallucci F, Steyaert M, Moens T (2005) Can field distributions of marine predacious nematodes be explained by sediment constraints on their foraging success? Mar Ecol Prog Ser 304:167–178

    Article  Google Scholar 

  • Gallucci F, Moens T, Vanreusel A, Fonseca G (2008) Active colonization of disturbed sediments by deep-sea nematodes: evidence for the patch mosaic model. Mar Ecol Prog Ser 367:173–183

    Article  Google Scholar 

  • Gao H, Schreiber F, Collins G, Jensen MM, Kostka JE, Lavik G et al (2010) Aerobic denitrification in permeable Wadden Sea sediments. ISME J 4:417–426

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Matyka M, Liu B, Khalili A, Kostka JE, Collins G et al (2012) Intensive and extensive nitrogen loss from intertidal permeable sediments of the Wadden Sea. Limnol Oceanogr 57:185–198

    Article  CAS  Google Scholar 

  • Garraffoni ARS, Alcantara FC, Checon HH (2017) Evaluating the anesthetization and fixation efficacy of “soft” and “hard” freshwater benthic meiofauna: what is the best method for specimen reservation? Limnology 18:209–218

    Article  CAS  Google Scholar 

  • Gaudes A, Muñoz I, Moens T (2013) Bottom-up effects on freshwater bacterivorous nematode populations: a microcosm approach. Hydrobiologia 707:159–172

    Article  CAS  Google Scholar 

  • Gee JM (1989) An ecological and economic review of meiofauna as food for fish. Zool J Linnean Soc 96:243–261

    Article  Google Scholar 

  • Gerlach SA (1978) Food-chain relationships in subtidal silty sand marine sediments and role of meiofauna in stimulating bacterial productivity. Oecologia 33:55–69

    Article  PubMed  Google Scholar 

  • Gheskiere T, Hoste E, Vanaverbeke J, Vincx M, Degraer S (2004) Horizontal zonation patterns and feeding structure of marine nematode assemblages on a macrotidal, ultra-dissipative sandy beach (De Panne, Belgium). J Sea Res 52:221–226

    Article  Google Scholar 

  • Giere O (2009) Meiobenthology: the microscopic motile fauna of aquatic sediments, 2nd edn. Springer, Berlin, 527 p

    Google Scholar 

  • Gingold R, Mundo-Ocampo M, Holovachov O, Rocha-Olivares A (2010) The role of habitat heterogeneity in structuring the community of intertidal free-living marine nematodes. Mar Biol 157:1741–1753

    Article  PubMed  PubMed Central  Google Scholar 

  • Gingold R, Moens T, Rocha Olivares A (2013) Assessing the response of nematode communities to climate change driven warming: a microcosm experiment. PLoS One 8:e66653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gourbault N, Warwick RM, Hellequet M-N (1998) Spatial and temporal variability in the composition and structure of meiobenthic assemblages (especially nematodes) in tropical beaches (Guadeloupe, FWI). Cah Biol Mar 39:29–39

    Google Scholar 

  • Graf G (1989) Benthic pelagic coupling in a deep-sea benthic community. Nature 341:437–439

    Article  Google Scholar 

  • Gray JS (1981) The ecology of marine sediments. An introduction to the structure and function of benthic communities. Cambridge studies in modern biology, vol 2. Cambridge University Press, Cambridge, 185 p

    Google Scholar 

  • Gray NF (1984) Ecology of nematophagous fungi: comparison of the soil sprinkling method with the Baermann funnel technique in the isolation of endoparasites. Soil Biol Biochem 16:81–83

    Article  Google Scholar 

  • Grego M, Stachowitsch M, De Troch M, Riede B (2013) CellTracker Green labelling vs. rose bengal staining: CTG wins by points in distinguishing living from dead anoxia-impacted copepods and nematodes. Biogeosciences 10:4565–4575

    Article  Google Scholar 

  • Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature 242:344–347

    Article  Google Scholar 

  • Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  CAS  PubMed  Google Scholar 

  • Guarini JM, Blanchard GF, Gros P, Harrison SJ (1997) Modelling the mud surface temperature on intertidal flats to investigate the spatio-temporal dynamics of the benthic microalgal photosynthetic capacity. Mar Ecol Prog Ser 153:25–36

    Article  CAS  Google Scholar 

  • Guarini JM, Blanchard GF, Bacher C, Gros P, Riera P, Richard P et al (1998) Dynamics of spatial patterns of microphytobenthic biomass: inferences from a geostatistical analysis of two comprehensive surveys in Marennes-Oléron Bay (France). Mar Ecol Prog Ser 166:131–141

    Article  Google Scholar 

  • Guisande C, Maneiro I, Riveiro I, Barreiro A, Pazos Y (2002) Estimation of copepod trophic niche in the field using amino acids and marker pigments. Mar Ecol Prog Ser 239:147–156

    Article  CAS  Google Scholar 

  • Hamels I, Moens T, Muylaert K, Vyverman W (2001) Trophic interactions between ciliates and nematodes from an intertidal flat. Aquat Microb Ecol 26:61–72

    Article  Google Scholar 

  • Harris RP (1972a) The distribution and ecology of the interstitial meiofauna of a sandy beach at Whitsand Bay, East Cornwall. J Mar Biol Assoc UK 52:1–18

    Article  Google Scholar 

  • Harris RP (1972b) Seasonal changes in population density and vertical distribution of harpacticoid copepods on an intertidal sand beach. J Mar Biol Assoc UK 52:493–505

    Article  Google Scholar 

  • Hedqvist-Johnson K, Andre C (1991) The impact of the brown shrimp Crangon crangon L on soft-bottom meiofauna – An experimental approach. Ophelia 34:41–49

    Article  Google Scholar 

  • Heiner I, Neuhaus B (2007) Loricifera from the deep sea at the Galapagos Spreading Center, with a description of Spinoloricus turbatio gen. et sp. nov. (Nanaloricidae). Helgol Mar Res 61:167–182

    Article  Google Scholar 

  • Heip C, Smol N, Hautekiet W (1974) Rapid method of extracting meiobenthic nematodes and copepods from mud and detritus. Mar Biol 28:79–81

    Article  Google Scholar 

  • Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol Annu Rev 23:399–489

    Google Scholar 

  • Herbert RA (1999) Nitrogen cycling in coastal marine sediments. FEMS Microbiol Rev 23:563–590

    Article  CAS  PubMed  Google Scholar 

  • Herman PMJ, Middelburg JJ, Heip CHR (2001) Benthic community structure and sediment processes on an intertidal flat: results from ECOFLAT project. Cont Shelf Res 21:2055–2071

    Article  Google Scholar 

  • Hicks GRF, Coull BC (1983) The ecology of marine meiobenthic harpacticoid copepods. Oceanogr Mar Biol 21:67–175

    Google Scholar 

  • Higgins RP, Thiel H (1988) Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Hubas C, Sachidhanandam C, Rybarczyk H, Lubarsky HV, Rigaux A, Moens T, Paterson DM (2010) Bacterivorous nematodes stimulate microbial growth and exopolymer production in marine sediment microcosms. Mar Ecol Prog Ser 419:85–94

    Article  Google Scholar 

  • Hulings NC, Gray JS (1971) A manual for the study of meiofauna. Smithsonian contributions to zoology, vol 78. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Ingels J, dos Santos G, Hicks A, Valdes Vazquez Y, Neres PF, Pontes LP et al (2018) Short-term CO2 exposure and temperature rise effects on metazoan meiofauna and free-living nematodes in sandy and muddy sediments: results from a flume experiment. J Exp Mar Biol Ecol 502:211–226

    Article  Google Scholar 

  • Jacobsen TR, Azam F (1984) Role of bacteria in copepod fecal pellet decomposition: colonization, growth rates and mineralization. Bull Mar Sci 35:495–502

    Google Scholar 

  • Jansson BO (1968) Quantitative and experimental studies of the interstitial fauna in four Swedish sandy beaches. Ophelia 5:1–71

    Article  Google Scholar 

  • Jensen P (1982) Diatom-feeding behaviour of the free-living marine nematode Chromadorita tenuis. Nematologica 28:71–76

    Article  Google Scholar 

  • Jensen P (1986) Nematode fauna in the sulphide-rich brine seep and adjacent bottoms of the East Flower Garden, NW Gulf of Mexico. IV. Ecological aspects. Mar Biol 92:489–503

    Article  Google Scholar 

  • Joint IR, Gee JM, Warwick RM (1982) Determination of fine-scale vertical distribution of microbes and meiofauna in an intertidal sediment. Mar Biol 72:157–164

    Article  Google Scholar 

  • Juario JV (1975) Nematode species composition and seasonal fluctuation of a sublittoral meiofauna community in the German Bight. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven 15:283–337

    Google Scholar 

  • Kaiser MJ, Attrill MJ, Jennings S, Thomas DN, Barnes DKA (2011) Marine ecology: processes, systems, and impacts, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Karlson AML, Viitasalo-Frösen S (2009) Assimilation of C-14-labelled zooplankton benthic eggs by macrobenthos. J Plankton Res 31:459–463

    Article  CAS  Google Scholar 

  • Kendall MA, Davey JT, Widdicombe S (1995) The response of two estuarine benthic communities to the quantity and quality of food. Hydrobiologia 311:207–214

    Article  Google Scholar 

  • Kennedy AD (1994) Predation within meiofaunal communities – Description and results of a rapid-freezing method of investigation. Mar Ecol Prog Ser 114:71–79

    Article  Google Scholar 

  • Kjellin J, Hallin S, Wörman A (2007) Spatial variations in denitrification activity in wetland sediments explained by hydrology and denitrifying community structure. Water Res 41:4710–4720

    Article  CAS  PubMed  Google Scholar 

  • Kristensen E, Kostka JE (2005) Macrofaunal burrows and irrigation in marine sediment: microbiological and biogeochemical interactions. In: Kristensen E, Haese RR, Kostka JE (eds) Interactions between macro- and microorganisms in marine sediments. Coastal and estuarine studies, vol 60. American Geophysical Union, New York, pp 125–157

    Chapter  Google Scholar 

  • Kuipers BR, de Wilde PAWJ, Creutzberg F (1981) Energy flow in a tidal flat ecosystem. Mar Ecol Prog Ser 5:215–221

    Article  Google Scholar 

  • Lampadariou N, Ingels J, Schratzberger M, Thistle D (2018) “Meiofauna research approaching 2020: knowledge gaps and new avenues”, an introduction to the special meiofauna issue resulting from IςIMCo, the 16th International Meiofauna Conference. J Exp Mar Biol Ecol 502:1–3

    Article  Google Scholar 

  • Leach AM, Galloway J, Bleeker A, Kitzes J (2012) A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environ Dev 1:40–66

    Article  Google Scholar 

  • Leduc D, Probert PK (2009) The effect of bacterivorous nematodes on detritus incorporation by macrofaunal detritivores: a study using stable isotope and fatty acid analyses. J Exp Mar Biol Ecol 371:130–139

    Article  CAS  Google Scholar 

  • Leduc D, Probert P, Nodder S (2010) Influence of mesh size and core penetration on estimates of deep-sea nematode abundance, biomass, and diversity. Deep Sea Res I 57:1354–1362

    Article  Google Scholar 

  • Lee JJ, Tietjen JH, Mastropaolo C, Rubin H (1977) Food quality and the heterogeneous spatial distribution of meiofauna. Helgoländer Meeresun 30:272–282

    Article  Google Scholar 

  • Lehman PS, Reid JW (1992) Phyllognathopus viguieri (Crustacea: Harpacticoida), a predaceous copepod of phytoparasitic, entomopathogenic, and free-living nematodes. Proc Soil Crop Sci Soc FL 52:78–82

    Google Scholar 

  • Levin L, Blair N, DeMaster D, Plaia G, Fornes W, Martin C, Thomas C (1997) Rapid subduction of organic matter by maldanid polychaetes on the North Carolina slope. J Mar Res 55:595–611

    Article  CAS  Google Scholar 

  • Li J, Vincx M, Herman PMJ (1996) A model of nematode dynamics in the Westerschelde estuary. Ecol Model 90:271–284

    Article  Google Scholar 

  • Liu X-S, Xu W-Z, Cheung SG, Shin PK (2008) Subtropical meiobenthic nematode communities in Victoria Harbour, Hong Kong. Mar Pollut Bull 56:1491–1497

    Article  CAS  PubMed  Google Scholar 

  • Löhr SC, Kennedy MJ (2015) Micro-trace fossils reveal pervasive reworking of Pliocene sapropels by low-oxygen-adapted benthic meiofauna. Nat Commun:6. https://doi.org/10.1038/ncomms7589

  • Lucas CH, Widdows J, Brinsley MD, Salkeld PN, Herman PMJ (2000) Benthic-pelagic exchange of microalgae at a tidal flat. 1. Pigment analysis. Mar Ecol Prog Ser 196:59–73

    Article  CAS  Google Scholar 

  • Maghsoud H, Weiss A, Smith JPS, Litvaitis MK, Fegley SR (2014) Diagnostic PCR can be used to illuminate meiofaunal diets and trophic relationships. Invertebr Biol 133:121–127

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangubhai S, Greenwood JG (2004) A simple practical method for bulk and rapid extraction of free-living nematodes from marine and estuarine sediments. Hydrobiologia 522:343–347

    Article  Google Scholar 

  • Marchant HK, Lavik G, Holtappels M, Kuypers MMM (2014) The fate of nitrate in intertidal permeable sediments. PLoS One 9:e104517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maria TF, De Troch M, Vanaverbeke J, Esteves AM, Vanreusel A (2011) Use of benthic vs planktonic organic matter by sandy-beach organisms: a food tracing experiment with C-13 labelled diatoms. J Exp Mar Biol Ecol 407:309–314

    Article  Google Scholar 

  • Maria TF, Vanaverbeke J, Esteves AM, De Troch M, Vanreusel A (2012) The importance of biological interactions for the vertical distribution of nematodes in a temperate ultra-dissipative sandy beach. Estuar Coast Shelf Sci 97:114–126

    Article  Google Scholar 

  • Maria TF, Paiva P, Vanreusel A, Esteves AM (2013a) The relationship between sandy beach nematodes and environmental characteristics in two Brazilian sandy beaches (Guanabara Bay, Rio de Janeiro). An Acad Bras Cienc 85:257–270

    Article  PubMed  Google Scholar 

  • Maria TF, Vanaverbeke J, Gingold R, Esteves AM, Vanreusel A (2013b) Tidal exposure or microhabitats: what determines sandy-beach nematode zonation? A case study of a macrotidal ridge-and-runnel sandy beach in Belgium. Mar Ecol 34:207–217

    Article  Google Scholar 

  • Maria TF, Silva MG, Souza TP, Vanaverbeke J, Vanreusel A, Esteves AM (2018) Is the vertical distribution of meiofauna similar in two contrasting microhabitats? A case study of a macrotidal sandy beach. J Exp Mar Biol Ecol 502:39–51

    Article  Google Scholar 

  • Martens PM, Schockaert ER (1986) The importance of turbellarians in the marine meiobenthos – A review. Hydrobiologia 132:295–303

    Article  Google Scholar 

  • Materatski P, Moens T, Vafeiadou A-M, Ribeiro R, Adão H (2015) A comparative analysis of benthic nematode assemblages before habitat loss and during the early recovery of Zostera noltii seagrass beds. Estuar Coast Shelf Sci 167:256–268

    Article  Google Scholar 

  • McIntyre A, Murison D (1973) The meiofauna of a flatfish nursery ground. J Mar Biol Assoc U K 53:93–118

    Article  Google Scholar 

  • McLachlan A, Erasmus T, Furstenberg JP (1977) Migration of sandy beach meiofauna. Afr Zool 12:257–277

    Article  Google Scholar 

  • Meadows AS, Ingels J, Widdicombe S, Hale R, Rundle SD (2015) Effects of elevated CO2 and temperature on an intertidal meiobenthic community. J Exp Mar Biol Ecol 469:44–56

    Article  CAS  Google Scholar 

  • Mermillod-Blondin F, Rosenberg R, Francois-Carcaillet F, Norling K, Mauclaire L (2004) Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquat Microb Ecol 36:271–284

    Article  Google Scholar 

  • Meysman FJR, Middelburg JJ, Heip CHR (2006) Bioturbation: a fresh look at Darwin’s last idea. Trends Ecol Evol 21:688–695

    Article  PubMed  Google Scholar 

  • Middelburg JJ, Barranguet C, Boschker HTS, Herman PMJ, Moens T, Heip CHR (2000) The fate of intertidal microphytobenthos carbon: an in situ 13C labelling study. Limnol Oceanogr 45:1224–1234

    Article  CAS  Google Scholar 

  • Moens T, Vincx M (1997) Observations on the feeding ecology of estuarine nematodes. J Mar Biol Assoc U K 77:211–227

    Article  Google Scholar 

  • Moens T, Van Gansbeke D, Vincx M (1999a) Linking estuarine nematodes to their suspected food. A case study from the Westerschelde Estuary (south-west Netherlands). J Mar Biol Assoc UK 79:1017–1027

    Article  Google Scholar 

  • Moens T, Verbeeck L, de Maeyer A, Swings J, Vincx M (1999b) Selective attraction of marine bacterivorous nematodes to their bacterial food. Mar Ecol Prog Ser 176:165–178

    Article  Google Scholar 

  • Moens T, Verbeeck L, Vincx M (1999c) Feeding biology of a predatory and a facultatively predatory nematode (Enoploides longispiculosus and Adoncholaimus fuscus). Mar Biol 134:585–593

    Article  Google Scholar 

  • Moens T, Herman PMJ, Verbeeck L, Steyaert M, Vincx M (2000) Predation rates and prey selectivity in two predacious estuarine nematodes. Mar Ecol Prog Ser 205:185–193

    Article  Google Scholar 

  • Moens T, Luyten C, Middelburg JJ, Herman PMJ, Vincx M (2002) Tracing organic matter sources of estuarine tidal flat nematodes with stable carbon isotopes. Mar Ecol Prog Ser 234:127–137

    Article  Google Scholar 

  • Moens T, Yeates GW, De Ley P (2004) Use of carbon and energy sources by nematodes. Nematol Monogr Perspect 2:529–545

    Google Scholar 

  • Moens T, Bouillon S, Gallucci F (2005a) Dual stable isotope abundances unravel trophic position of estuarine nematodes. J Mar Biol Assoc UK 85:1401–1407

    Article  CAS  Google Scholar 

  • Moens T, Dos Santos GAP, Thompson F, Swings J, Fonsêca-Genevois V, Vincx M et al (2005b) Do nematode mucus secretions affect bacterial growth? Aquat Microb Ecol 40:77–83

    Article  Google Scholar 

  • Moens T, Bergtold M, Traunspurger W (2006) Chapter 6. Feeding ecology of free-living benthic nematodes. In: Eyualem A, Andrássy I, Traunspurger W (eds) Freshwater nematodes: ecology and taxonomy. CAB International Publishing, Cambridge, pp 105–131

    Chapter  Google Scholar 

  • Moens T, Moodley L, Steyaert M, Van Colen C, Van Oevelen D, Boschker HT S, et al (2011) The structure and functional roles of tidal flat meiobenthos. In: Heip C, Laane R (eds) Aspects of coastal research in contribution to LOICZ in The Netherlands and Flanders (2002-2010). LOICZ Research and Studies, vol 38, pp 171–184

    Google Scholar 

  • Moens T, Braeckman U, Derycke S, Fonseca G, Gallucci F, Gingold R, Guilini K, Ingels J, Leduc D, Vanaverbeke J, Van Colen C, Vanreusel A, Vincx M (2013) Ecology of free-living marine nematodes. In: Schmidt-Rhaesa A (ed) Handbook of zoology. Gastrotricha, cycloneuralia and gnathifera, vol 2. Nematoda. De Gruyter, Berlin, pp 109–152

    Google Scholar 

  • Moens T, Vafeiadou AM, De Geyter E, Vanormelingen P, Sabbe K, De Troch M (2014) Diatom feeding across trophic guilds in tidal flat nematodes, and the importance of diatom cell size. J Sea Res 92:125–133

    Article  Google Scholar 

  • Møller EF, Borg CMA, Jónasdóttir SH, Satapoomin S, Jaspers C, Nielsen TG (2011) Production and fate of copepod fecal pellets across the Southern Indian Ocean. Mar Biol 158:677–688

    Article  Google Scholar 

  • Montagna PA (1995) Rates of metazoan meiofaunal microbivory: a review. Vie et Milieu 45:1–9

    Google Scholar 

  • Montagna PA, Yoon WB (1991) The effect of freshwater inflow on meiofaunal consumption of sediment bacteria and microphytobenthos in San Antonio Bay, Texas, U.S.A. Estuar Coast Shelf Sci 33:529–547

    Article  Google Scholar 

  • Montagna PA, Coull BC, Herring TL, Dudley BW (1983) The relationship between abundances of meiofauna and their suspected microbial food (diatoms and bacteria). Estuar Coast Shelf Sci 17:381–394

    Article  Google Scholar 

  • Montagna PA, Baguley JG, Hsiang C-Y, Reuscher MG (2017) Comparison of sampling methods for deep-sea infauna. Limnol Oceanogr Methods 15:166–183

    Article  Google Scholar 

  • Montagnes DJS, Lynn DH (1993) A quantitative protargol stain (QPS) for ciliates and other protists. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis Publishers, Boca Raton, FL, pp 229–240

    Google Scholar 

  • Moreno M, Ferrero TJ, Gallizia I, Vezzulli L, Albertelli G, Fabiano M (2008a) An assessment of the spatial heterogeneity of environmental disturbance within an enclosed harbour through the analysis of meiofauna and nematode assemblages. Estuar Coast Shelf Sci 77:565–576

    Article  Google Scholar 

  • Moreno M, Vezzulli L, Marin V, Laconi P, Albertelli G, Fabiano M (2008b) The use of meiofauna diversity as an indicator of pollution in harbours. J Mar Sci 65:1428–1435

    CAS  Google Scholar 

  • Mostajir B, Amblard C, Buffan-Dubau E, De Wit R, Lensi R, Simé-Ngando T (2011) Chapter 13. Microbial food webs in aquatic and terrestrial ecosystems. In: Bertrand J-C, Caumette P, Lebaron P, Matheron R, Normand P, Simé-Ngando T (eds) Environmental microbiology: fundamentals and applications. Springer, pp 485–509

    Google Scholar 

  • Murphy RJ, Tolhurst TJ, Chapman MG, Underwood AJ (2008) Spatial variation of chlorophyll on estuarine mudflats determined by field-based remote sensing. Mar Ecol Prog Ser 365:45–55

    Article  CAS  Google Scholar 

  • Murray JW, Bowser SS (2000) Mortality, protoplasm decay rate, and reliability of staining techniques to recognize ‘living’ foraminifera: a review. J Foraminifer Res 30:66–70

    Article  Google Scholar 

  • Musat N, Giere O, Gieseke A, Thiermann F, Amann R, Dubilier N (2007) Molecular and morphological characterization of the association between bacterial endosymbionts and the marine nematode Astomonema sp. from the Bahamas. Environ Microbiol 9:1345–1353

    Article  CAS  PubMed  Google Scholar 

  • Nascimento FJA, Naslund J, Elmgren R (2012) Meiofauna enhances organic matter mineralization in soft sediment ecosystems. Limnol Oceanogr 57:338–346

    Article  CAS  Google Scholar 

  • Näslund J, Nascimento FJ, Gunnarsson JS (2010) Meiofauna reduces bacterial mineralization of naphthalene in marine sediment. ISME J 4:1421–1430

    Article  PubMed  CAS  Google Scholar 

  • Nehring S (1991) Der Röhrenbau: eine neuentdeckte, erfolgreiche Lebensweise bei den Nematoden. Mikokosmos 80:134–138

    Google Scholar 

  • Nehring S, Jensen P, Lorenzen S (1990) Tube-dwelling nematodes: tube construction and possible ecological effects on sediment-water interfaces. Mar Ecol Prog Ser 64:123–128

    Article  Google Scholar 

  • Nicholas WL (2001) Seasonal variations in nematode assemblages on an Australian temperate ocean beach: the effect of heavy seas and unusually high tides. Hydrobiologia 464:17–26

    Article  Google Scholar 

  • Nicholas W, Hodda M (1999) The free-living nematodes of a temperate, high energy, sandy beach: faunal composition and variation over space and time. Hydrobiologia 394:113–127

    Article  Google Scholar 

  • Noodt W (1971) Ecology of the copepoda. In: Hulings NC (ed) Proceedings of the first international conference on Meiofauna, Tunis, 1969. Smithsonian contributions to zoology, vol 76, pp 97–102

    Google Scholar 

  • Ólafsson E, Elmgren R (1991) Effects of biological disturbance by benthic amphipods Monoporeia affinis on meiobenthic community structure: a laboratory approach. Mar Ecol Prog Ser 74:99–107

    Article  Google Scholar 

  • Ólafsson E, Elmgren R (1997) Seasonal dynamics of sublittoral meiobenthos in relation to seasonality in a coastal marine ecosystem. Oecologia 67:157–168

    Google Scholar 

  • Ólafsson E, Moore GC, Bett BJ (1990) The impact of Melinna palmata Grube, a tube-building polychaete, on meiofaunal community structure in a soft-bottom subtidal habitat. Estuar Coast Shelf Sci 31:883–893

    Article  Google Scholar 

  • Ólafsson E, Elmgren R, Papakosta O (1993) Effects of the deposit-feeding benthic bivalve Macoma balthica on meiobenthos. Oecologia 93:457–462

    Article  PubMed  Google Scholar 

  • Olesen M, Strake S, Andrushaitis A (2005) Egestion of non-pellet-bound fecal material from the copepod Acartia tonsa: implication for vertical flux and degradation. Mar Ecol Prog Ser 293:131–142

    Article  Google Scholar 

  • Ott JA, Schiemer F (1973) Respiration and anaerobiosis of free living nematodes from marine and limnic sediments. Neth J Sea Res 7:233–243

    Article  Google Scholar 

  • Pace MC, Carman KR (1996) Interspecific differences among meiobenthic copepods in the use of microalgal food resources. Mar Ecol Prog Ser 143:77–86

    Article  Google Scholar 

  • Paerl HW (2006) Assessing and managing nutrient-enhanced eutrophication in estuarine and coastal waters: interactive effects of human and climatic perturbations. Ecol Eng 26:40–54

    Article  Google Scholar 

  • Paranhos R, Mayr LM (1993) Seasonal patterns of temperature and salinity in Guanabara Bay, Brazil. Fresenius Environ Bull 2:647–652

    CAS  Google Scholar 

  • Pati AC, Belmonte G, Ceccherelli VU, Boero F (1999) The inactive temporary component: an unexplored fraction of meiobenthos. Mar Biol 134:419–427

    Article  Google Scholar 

  • Pfannkuche O, Thiel H (1988) Chapter 9. Sample processing. In: Higgins RP, Thiel H (eds) Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, DC, pp 134–145

    Google Scholar 

  • Pinckney J, Sandulli R (1990) Spatial autocorrelation analysis of meiofaunal and microalgal populations on an intertidal sandflat – Scale linkage between consumers and resources. Estuar Coast Shelf Sci 30:341–353

    Article  Google Scholar 

  • Pinckney JL, Carman KR, Lumsden SE, Hymel SN (2003) Microalgal-meiofaunal trophic relationships in muddy intertidal estuarine sediments. Aquat Microb Ecol 31:99–108

    Article  Google Scholar 

  • Polz MF, Ott JA, Bright M, Cavanaugh CM (2000) When bacteria hitch a ride. ASM News 66:531–539

    Google Scholar 

  • Porubsky WP, Weston NB, Joye SB (2009) Benthic metabolism and the fate of dissolved inorganic nitrogen in intertidal sediments. Estuar Coast Shelf Sci 83:392–402

    Article  CAS  Google Scholar 

  • Rabalais NN, Turner RE, Díaz RJ, Justic D (2009) Global change and eutrophication of coastal waters. ICES J Mar Sci 66:1528–1537

    Article  Google Scholar 

  • Reise K (1981) High abundance of small zoobenthos around biogenic structures in tidal sediments of the Wadden Sea. Helgoländer Meeresun 34:413–425

    Article  Google Scholar 

  • Reise K (2002) Sediment mediated species interactions in coastal waters. J Sea Res 48:127–141

    Article  Google Scholar 

  • Reiss J, Schmid-Araya JM (2011) Feeding response of a benthic copepod to ciliate prey type, prey concentration and habitat complexity. Freshw Biol 56:1519–1530

    Article  Google Scholar 

  • Remane A (1934) Die Brackwasserfauna. Verhandlungen der Deutschen Zoologischen Gesellschaft, Greifswald, pp 34–74

    Google Scholar 

  • Renaud-Debyser J (1963) Recherches écologiques sur la faune interstitielle des sables. Bassin d’Arcachon, île de Bimini, Bahamas. Vie et Milieu, Suppl 15:1–157

    Google Scholar 

  • Riemann F, Helmke E (2002) Symbiotic relations of sediment-agglutinating nematodes and bacteria in detrital habitats: the enzyme-sharing concept. Mar Ecol 23:93–113

    Article  CAS  Google Scholar 

  • Riemann F, Schrage M (1978) The mucus-trap hypothesis on feeding of aquatic nematodes and implications for biodegradation and sediment texture. Oecologia 34:75–88

    Article  PubMed  Google Scholar 

  • Rieper M (1982) Feeding preferences of marine harpacticoid copepods for various species of bacteria. Mar Ecol Prog Ser 7:303–307

    Article  Google Scholar 

  • Rieper M (1985) Some lower food web organisms in the nutrition of marine harpacticoid copepods: an experimental study. Helgoländer Meeresun 39:357–366

    Article  Google Scholar 

  • Riera R, Monterroso O, Rodríguez M, Ramos E, Sacramento A (2011) Six-year study of meiofaunal dynamics in fish farms in Tenerife (Canary Islands, NE Atlantic Ocean). Aquat Ecol 45:221–229

    Article  Google Scholar 

  • Rohal M, Thistle D, Easton Erin E (2018) Extraction of metazoan meiofauna from muddy deep-sea samples: operator and taxon effects on efficiency. J Exp Mar Biol Ecol 502:105–110

    Article  Google Scholar 

  • Rysgaard S, Christensen PB, Sørensen MV, Funch P, Berg P (2000) Marine meiofauna, carbon and nitrogen mineralization in sandy and soft sediments of Disko Bay, West Greenland. Aquat Microb Ecol 21:59–71

    Article  Google Scholar 

  • Rzeznik-Orignac J, Fichet D, Boucher G (2003) Spatio-temporal structure of the nematode assemblages of the Brouage mudflat (Marennes-Oleron, France). Estuar Coast Shelf Sci 58:77–88

    Article  CAS  Google Scholar 

  • Rzeznik-Orignac J, Fichet D, Boucher G (2004) Extracting massive numbers of nematodes from muddy marine deposits: efficiency and selectivity. Nematology 6:605–616

    Article  Google Scholar 

  • Rzeznik-Orignac J, Boucher G, Fichet D, Richard P (2008) Stable isotope analysis of food source and trophic position of intertidal nematodes and copepods. Mar Ecol Prog Ser 359:145–150

    Article  Google Scholar 

  • Sahraean N, Moens T (2018) Year-to-year variability in beach nematode assemblage structure and biodiversity along the northern coast of the Strait of Hormuz, Persian Gulf (submitted)

    Google Scholar 

  • Sahraean N, Campinas Bezerra T, Ejlali Khanaghah K, Mosallanejad H, Van Ranst E, Moens T (2017) Effects of pollution on nematode assemblage structure and diversity on beaches of the Northern Persian Gulf. Hydrobiologia 799:349–369

    Article  CAS  Google Scholar 

  • Sanchez-Moreno S, Ferris H, Guil N (2008) Role of tardigrades in the suppressive service of a soil food web. Agric Ecosyst Environ 124:187–192

    Article  Google Scholar 

  • Sandulli R, Pinckney J (1999) Patch sizes and spatial patterns of meiobenthic copepods and benthic microalgae in sandy sediments: a microscale approach. J Sea Res 41:179–187

    Article  Google Scholar 

  • Sarmento VC, Santos PJP, Hale R, Ingels J, Widdicombe S (2017) Effects of elevated CO2 and temperature on an intertidal harpacticoid copepod community. ICES J Mar Sci 74:1159–1169

    Google Scholar 

  • Schiemer F, Novak R, Ott J (1990) Metabolic studies on thiobiotic free-living nematodes and their symbiotic microorganisms. Mar Biol 106:129–137

    Article  CAS  Google Scholar 

  • Schratzberger M, Ingels J (2018) Meiofauna matters: the roles of meiofauna in benthic ecosystems. J Exp Mar Biol Ecol 502:12–25

    Article  Google Scholar 

  • Schratzberger M, Warwick RM (1999) Impact of predation and sediment disturbance by Carcinus maenas (L.) on free-living nematode community structure. J Exp Mar Biol Ecol 235:255–271

    Article  Google Scholar 

  • Schratzberger M, Gee JM, Rees HL, Boyd SE, Wall CM (2000) The structure and taxonomic composition of sublittoral meiofauna assemblages as an indicator of the status of marine environments. J Mar Biol Assoc UK 80:969–980

    Article  Google Scholar 

  • Schratzberger M, Lampadariou N, Somerfield PJ, Vandepitte L, Vanden Berghe E (2009) The impact of seabed disturbance on nematode communities: linking field and laboratory observations. Mar Biol 156:709–724

    Article  Google Scholar 

  • Schuelke T, Pereira TJ, Hardy SM, Bik HM (2018) Nematode-associated microbial taxa do not correlate with host phylogeny, geographic region or feeding morphology in marine sediment habitats. Mol Ecol 27:1930–1951

    Article  PubMed  Google Scholar 

  • Schwinghamer P (1981) Extraction of living meiofauna from marine sediments by centrifugation in a silica sol-sorbitol mixture. Can J Fish Aquat Sci 38:476–478

    Article  Google Scholar 

  • Seifried S, Durbaum J (2000) First clear case of predation in marine Copepoda Harpacticoida. J Nat Hist 34:1595–1618

    Article  Google Scholar 

  • Seitzinger S, Harrison JA, Böhlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, Van Drecht G (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16:2064–2090

    Article  CAS  PubMed  Google Scholar 

  • Seuront L, Spilmont N (2002) Self-organized criticality in intertidal microphytobenthos patch patterns. Phys A Stat Mech Appl 313:513–539

    Article  CAS  Google Scholar 

  • Smith LD, Coull BC (1987) Juvenile spot (Pisces) and grass shrimp predation on meiobenthos in muddy and sandy substrata. J Exp Mar Biol Ecol 105:123–136

    Article  Google Scholar 

  • Smol N, Huys R, Vincx M (1991) A 4-years’ analysis of the meiofauna community of a dumping site for TiO2-waste off the Dutch coast. Chem Ecol 5:197–215

    Article  CAS  Google Scholar 

  • Soetaert K, Vincx M, Wittoeck J, Tulkens M, Van Gansbeke D (1994) Spatial patterns of Westerschelde meiobenthos. Estuar Coast Shelf Sci 39:367–388

    Article  Google Scholar 

  • Soetaert K, Vincx M, Wittoeck J, Tulkens M (1995) Meiobenthic distribution and nematode community structure in 5 European estuaries. Hydrobiologia 311:185–206

    Article  Google Scholar 

  • Soetaert K, Muthumbi AW, Heip C (2002) Size and shape of ocean margin nematodes: morphological diversity and depth-related patterns. Mar Ecol Prog Ser 242:195–204

    Article  Google Scholar 

  • Soetaert K, Franco M, Lampadariou N, Muthumbi A, Steyaert M, Vandepitte L, van den Berghe E, Vanaverbeke J (2009) Factors affecting nematode biomass, length and width from the shelf to the deep sea. Mar Ecol Prog Ser 392:123–132

    Article  Google Scholar 

  • Somerfield P, Warwick RM, Moens T (2005) Chapter 6. Meiofauna techniques. In: Eleftheriou A, McIntyre A (eds) Methods for the study of marine benthos, 3rd edn. Blackwell Science, Oxford, pp 229–272

    Chapter  Google Scholar 

  • Steyaert M, Herman PMJ, Moens T, Widdows J, Vincx M (2001) Tidal migration of nematodes on an estuarine tidal flat (The Molenplaat, Schelde Estuary, SW Netherlands). Mar Ecol Prog Ser 224:299–304

    Article  Google Scholar 

  • Steyaert M, Vanaverbeke J, Vanreusel A, Barranguet C, Lucas M, Vincx M (2003) The importance of fine-scale, vertical profiles in characterizing nematode community structure. Estuar Coast Shelf Sci 58:353–366

    Article  Google Scholar 

  • Stock W, Heylen K, Sabbe K, Willems A, De Troch M (2014) Interactions between benthic copepods, bacteria and diatoms promote nitrogen retention in intertidal marine sediments. PLoS One 9:e111001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun B, Fleeger JW, Carney RS (1993) Sediment microtopography and the small-scale spatial distribution of meiofauna. J Exp Mar Biol Ecol 167:73–90

    Article  Google Scholar 

  • Svensson JR, Lindegarth M, Siccha M, Lenz M, Molis M, Wahl M, Pavia H (2010) Maximum species richness at intermediate frequencies of disturbance: consistency among levels of productivity. Ecology 88:830–838

    Article  Google Scholar 

  • Tchesunov AV, Ingels J, Popova EV (2012) Marine free-living nematodes associated with symbiotic bacteria in deep-sea canyons of north-east Atlantic Ocean. J Mar Biol Assoc UK 92:1257–1271

    Article  Google Scholar 

  • Thiel H, Thistle D, Wilson GD (1975) Ultrasonic treatment of sediment samples for more efficient sorting of meiofauna. Limnol Oceanogr 20:472–473

    Article  Google Scholar 

  • Thiermann F, Vismann B, Giere O (2000) Sulphide tolerance of the marine nematode Oncholaimus campylocercoides – A result of internal sulphur formation? Mar Ecol Prog Ser 193:251–259

    Article  CAS  Google Scholar 

  • Thistle D, Lambshead PJD, Sherman KM (1995) Nematode tail-shape groups respond to environmental differences in the deep sea. Vie et Milieu 45:107–115

    Google Scholar 

  • Thor P, Dam HG, Rogers DR (2003) Fate of organic carbon released from decomposing copepod fecal pellets in relation to bacterial production and ectoenzymatic activity. Aquat Microb Ecol 33:279–288

    Article  Google Scholar 

  • Tita G, Vincx M, Desrosiers G (1999) Size spectra, body width and morphotypes of intertidal nematodes: an ecological interpretation. J Mar Biol Assoc UK 79:1007–1015

    Article  Google Scholar 

  • Tita G, Desrosiers G, Vincx M, Nozais C (2000) Predation and sediment disturbance effects of the intertidal polychaete Nereis virens (Sars) on associated meiofaunal assemblages. J Exp Mar Biol Ecol 243:261–282

    Article  Google Scholar 

  • Turner JT (2002) Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat Microb Ecol 27:57–102

    Article  Google Scholar 

  • Uhlig G, Thiel H, Gray JS (1973) Quantitative separation of meiofauna – Comparison of methods. Helgoländer Meeresun 25:173–195

    Article  Google Scholar 

  • Urban-Malinga B, Moens T (2006) Fate of organic matter in Arctic intertidal sediments: is utilisation by meiofauna important? J Sea Res 56:239–248

    Article  CAS  Google Scholar 

  • Vafeiadou A-M, Materatski P, Adão H, De Troch M, Moens T (2014) Resource utilization and trophic position of nematodes harpacticoid copepods in and adjacent to Zostera noltii beds. Biogeosciences 11:4001–4014

    Article  Google Scholar 

  • Vafeiadou A-M, Bretaña BL, Van Colen C, Wu X, Dos Santos GAP, Moens T (2018) Climate change-induced temperature effects to intertidal tropical and temperate meiobenthic communities (submitted)

    Google Scholar 

  • Van Colen C, Montserrat F, Verbist K, Vincx M, Steyaert M, Vanaverbeke J, Herman PMJ, Degraer S, Ysebaert T (2009) Tidal flat nematode responses to hypoxia and subsequent macrofauna-mediated alterations of sediment properties. Mar Ecol Prog Ser 381:189–197

    Article  Google Scholar 

  • Van den Berghe W, Bergmans M (1981) Differential food preferences in 3 co-occurring species of Tisbe (Copepoda, Harpacticoida). Mar Ecol Prog Ser 4:213–219

    Article  Google Scholar 

  • Van Gaever S, Moodley L, Pasotti F, Houtekamer M, Middelburg JJ, Danovaro R, Vanreusel A (2009) Trophic specialisation of metazoan meiofauna at the Håkon Mosby Mud Volcano: fatty acid biomarker isotope evidence. Mar Biol 156:1289–1296

    Article  CAS  Google Scholar 

  • Van Oevelen D, Middelburg JJ, Soetaert K, Moodley L (2006a) The fate of bacterial carbon in an intertidal sediment: modeling an in situ isotope tracer experiment. Limnol Oceanogr 51:1302–1314

    Article  Google Scholar 

  • Van Oevelen D, Moodley L, Soetaert K, Middelburg JJ (2006b) The trophic significance of bacterial carbon in a marine intertidal sediment: results of an in situ stable isotope labeling study. Limnol Oceanogr 51:2349–2359

    Article  Google Scholar 

  • Van Oevelen D, Soetaert K, Middelburg JJ, Herman PMJ, Moodley L, Hamels I, Moens T, Heip C (2006c) Quantifying intertidal food webs, using biomass, tracer and carbon isotope data. J Mar Res 64:453–482

    Article  Google Scholar 

  • Vanaverbeke J, Merckx B, Degraer S, Vincx M (2011) Sediment-related distribution patterns of nematodes and macrofauna: two sides of the benthic coin? Mar Environ Res 71:31–40

    Article  CAS  PubMed  Google Scholar 

  • Vanreusel A, De Groote A, Gollner S, Bright M (2010) Ecology and biogeography of free-living nematodes associated with chemosynthetic environments in the deep sea: a review. PLoS One 5:e12449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venekey V, Santos PJP, Fonsêca-Genevois VG (2014) The influence of tidal and rainfall cycles on intertidal nematodes: a case study in a tropical sandy beach. Braz J Oceanogr 62:247–256

    Article  Google Scholar 

  • Viglierchio DR, Schmitt RV (1983) On the methodology of nematode extraction from field samples – Baermann funnel modifications. J Nematol 15:438–444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vincx M (1989) Free-living marine nematodes from the southern bight of the North Sea. Academiae Analecta, Klasse Wetenschappen 51:39–70

    Google Scholar 

  • Vincx M (1996) Meiofauna in marine and freshwater sediments. In: Hall GS (ed) Methods for the examination of organismal diversity in soils and sediments. IUBS, UNESCO. CAB International, New York, pp 187–195

    Google Scholar 

  • Vopel K, Dehmlow J, Arlt G (1996) Vertical distribution of Cletocamptus confluens (Copepoda, Harpacticoida) in relation to oxygen and sulphide microprofiles of a brackish water sulphuretum. Mar Ecol Prog Ser 141:129–137

    Article  CAS  Google Scholar 

  • Vranken G, Herman PMJ, Vincx M, Heip C (1986) A re-evaluation of marine nematode productivity. Hydrobiologia 135:193–196

    Article  Google Scholar 

  • Walton WR (1952) Techniques for recognition of living foraminifera. Contr Cush Found Foram Res 3:56–60

    Google Scholar 

  • Warwick RM (1981) Survival strategies of meiofauna. In: Jones NV, Wolff WJ (eds) Feeding and survival strategies of estuarine organisms. Plenum Press, New York, pp 39–52

    Chapter  Google Scholar 

  • Warwick RM (1987) Meiofauna: their role in marine detrital systems. In: Moriarty DJW, Pullin RSV (eds) Detritus and microbial ecology in aquaculture, ICLARM Conference Proceedings, vol 14. International Center for Living Aquatic Resources Management, Manila, pp 282–295

    Google Scholar 

  • Warwick RM, Buchanan J (1971) The meiofauna off the coast of Northumberland. II. Seasonal stability of the nematode population. J Mar Biol Assoc UK 51:355–362

    Article  Google Scholar 

  • Warwick RM, Gee JM (1984) Community structure of estuarine meiobenthos. Mar Ecol Prog Ser 18:97–111

    Article  Google Scholar 

  • Warwick RM, Gee JM, Berge JA, Ambrose W (1986) Effects of the feeding activity of the polychaete Streblosoma bairdi (Malmgren) on meiofaunal abundance and community structure. Sarsia 71:11–16

    Article  Google Scholar 

  • Warwick RM, McEvoy AJ, Thrush SF (1997) The influence of Atrina zelandica Gray on meiobenthic nematode diversity and community structure. J Exp Mar Biol Ecol 214:231–247

    Article  Google Scholar 

  • Watzin MC (1983) The effects of meiofauna on settling macrofauna: meiofauna may structure macrofaunal communlties. Oecologia 59:163–166

    Article  PubMed  Google Scholar 

  • Watzin MC (1985) Interactions among temporary and permanent meiofauna: observations on the feeding and behaviour of selected taxa. Biol Bull Mar Biol Lab Woods Hole 169:397–416

    Article  Google Scholar 

  • Wetzel MA, Jensen P, Giere O (1995) Oxygen/sulfide rexime and nematode fauna associated with Arenicola marina burrows: new insights in the thiobios case. Mar Biol 124:301–312

    Article  Google Scholar 

  • Wetzel MA, Fleeger JW, Powers SP (2001) Effects of hypoxia and anoxia on meiofauna: a review with new data from the Gulf of Mexico. Coas Estuar Sci 58:165–184

    Article  Google Scholar 

  • Widdows J, Brinsley M (2002) Impact of biotic and abiotic processes on sediment dynamics and the consequences to the structure and functioning of the intertidal zone. J Sea Res 48:143–156

    Article  Google Scholar 

  • Wieser W (1953) Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden. Arkiv für Zoologie 4:439–484

    Google Scholar 

  • Wieser W (1960) Benthic studies in Buzzards Bay. 2. The meiofauna. Limnol Oceanogr 5:121–137

    Article  Google Scholar 

  • Wiltshire KH, Blackburn J, Paterson DM (1997) The cryolander: a new method for in situ sampling of unconsolidated sediments minimising the distortion of sediment fabric. J Sediment Res 67:980–984

    Article  Google Scholar 

  • Xu K, Du Y, Lei Y, Dai R (2010) A practical method of Ludox density gradient centrifugation combined with protargol staining for extracting and estimating ciliates in marine sediments. Eur J Protistol 46:263–270

    Article  CAS  PubMed  Google Scholar 

  • Yoder M, Tandingan De Ley I, King IW, Mundo-Ocampo M, Mann J, Blaxter M, Poiras L, De Ley P (2006) DESS: a versatile solution for preserving morphology and extractable DNA of nematodes. Nematology 8:367–376

    Article  CAS  Google Scholar 

  • Zeppilli D, Sarrazin J, Leduc D, Martinez Arbizu P, Fontaneto D, Fontanier C, Gooday AJ, Kristensen RM, Ivanenko VN, Sørensen MV, Vanreusel A, Thébault J, Mea M, Allio N, Andro T, Arvigo A, Castrec J, Danielo M, Foulon V, Fumeron R, Hermabessiere L, Hulot V, James T, Langonne-Augen R, Le Bot T, Long M, Mahabror D, Morel Q, Pantalos M, Pouplard E, Raimondeau L, Rio-Cabello A, Seite S, Traisnel G, Urvoy K, Van Der Stegen T, Wey M, Fernandes D (2015) Is the meiofauna a good indicator for climate change and anthropogenic impacts? Mar Biodivers 45:505–535

    Article  Google Scholar 

  • Zühlke R, Blome D, van Bernem KH, Dittmann S (1998) Effects of the tube-building polychaete Lanice conchilega (Pallas) on benthic macrofauna and nematodes in an intertidal sandflat. Senckenberg Marit 29:131–138

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Beninger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moens, T., Beninger, P.G. (2018). Meiofauna: An Inconspicuous but Important Player in Mudflat Ecology. In: Beninger, P. (eds) Mudflat Ecology. Aquatic Ecology Series, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-99194-8_5

Download citation

Publish with us

Policies and ethics