Skip to main content

Geological, Physical and Chemical Foundations

  • Chapter
  • First Online:
Book cover Mudflat Ecology

Part of the book series: Aquatic Ecology Series ((AQEC,volume 7))

  • 787 Accesses

Abstract

Modern tidal flats are coastal geomorphological features with a recent geologic history (Holocene period, 10,000 YBP) that are found globally, under different climatic, hydrodynamic and sedimentological regimes. They are primarily characterized by fine-grained sedimentary deposits (silt and clay) that present unique physical and chemical properties, in comparison to other sediment types. The input of sediments to mudflats can be either riverine, from offshore, and/or from the erosion of coastal sedimentary deposits. Tides and tidal currents are the dominant hydrodynamic forces shaping mudflats, with wave action playing a secondary role. The occurrence of intermittent or temporary flooding and the presence of variable redox (oxidation-reduction) conditions are typical features of mudflat sediments. The temporally and spatially variable changes from aerobic, oxidized states of mudflat sediment and porewater to anaerobic, reduced states drive particular redox reactions that govern the characteristic chemical processes and biogeochemical functioning that distinguish mudflats from other coastal settings. Mudflat sediments are not inert; the high surface area:volume ratio of fine-grained sediment particles offers a vast and structurally-complex landscape for colonization by microbes that rely on surface-adhesion processes. Photosynthetic microalgae belonging to several taxonomic groups (collectively known as microphytobenthos MPB) are the dominant microorganisms growing in association with sedimentary particles, and forming a biofilm layer on top. In addition to physical forces, living benthic communities modify sediment properties as part of their normal physiology (micro- and macro-biota) and feeding, movement, and burrowing activity (meio- and macrofauna), especially in relation to stabilization and destabilization processes. These may ultimately have marked effects on sediment stability and geomorphology. The interplay between such biological processes and sediments in mudflats is currently an active field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Admiraal W, Peletier H, Brouwer T (1984) The seasonal succession patterns of diatom species on an intertidal mudflat: an experimental analysis. Oikos 42:30–40

    Article  Google Scholar 

  • Anthony EJ, Gardel A, Gratiot N, Proisy C, Allison MA, Dolique F, Fromard F (2010) The Amazon-influenced muddy coast of South America: a review of mud-bank-shoreline interactions. Earth Sci Rev 103:99–121

    Article  Google Scholar 

  • Anthony EJ, Gardel A, Proisy C, Fromard F, Gensac E, Peron C, Walcker R, Lesourd S (2013) The role of fluvial sediment supply and river-mouth hydrology in the dynamics of the muddy, Amazon-dominated Amapá-Guianas coast, South America: a three-point research agenda. J South Am Earth Sci 44:18–24

    Article  Google Scholar 

  • Archer AW (2013) World’s highest tides: hypertidal coastal systems in North America, South America and Europe. Sediment Geol 284–285:1–25

    Article  Google Scholar 

  • Bassoullet P, Le Hir P, Gouleau D, Robert S (2000) Sediment transport on an intertidal mudflat: field investigations and estimation of fluxes within the “Baie de Marennes-Oleron” (France). Cont Shelf Res 20:1635–1653

    Article  Google Scholar 

  • Bertness MD (1999) The ecology of Atlantic shorelines. Sinauer, Sunderland

    Google Scholar 

  • Bloomfield C (1952) The distribution of iron and aluminium oxides in gley soils. J Soil Sci 3:167–171

    Article  CAS  Google Scholar 

  • Blott SJ, Pye K (2001) Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Process Landforms 26:1237–1248

    Article  Google Scholar 

  • Carling PA, Williams JJ, Croudace IW, Amos CL (2009) Formation of mud ridge and runnels in the intertidal zone of the Severn Estuary, UK. Cont Shelf Res 29:1913–1926

    Article  Google Scholar 

  • Carter RWG (2013) Coastal environments. Academic Press, London

    Google Scholar 

  • Chang TS, Flemming BW, Tilch E, Bartholoma A, Wostmann R (2006) Late Holocene stratigraphic evolution of a back-barrier tidal basin in the East Frisian Wadden Sea, southern North Sea: transgressive deposition and its preservation potential. Facies 52:329–340

    Article  Google Scholar 

  • Chernetsky A, Schuttelaars HM, Talke SA (2010) The effect of tidal asymmetry and temporal settling lag on sediment trapping in tidal estuaries. Ocean Dyn 60:1219–1241

    Article  Google Scholar 

  • Cuadrado DG, Bournod CN, Pan J, Carmona NB (2013) Microbially-induced sedimentary structures (MISS) as record of storm action in supratidal modern estuarine setting. Sediment Geol 296:1–8

    Article  Google Scholar 

  • Dalsgaard T, Thamdrup B, Canfield DE (2005) Anaerobic ammonium oxidation (anammox) in the marine environment. Res Microbiol 156:457–464

    Article  CAS  PubMed  Google Scholar 

  • Davies RA (2012) Tidal signatures and their preservation potential in stratigraphic sequences. In: Davis RA, Dalrymple RW (eds) Principles of tidal sedimentology. Springer, New York, pp 35–56

    Chapter  Google Scholar 

  • de Brouwer JFC, Bjelic S, de Deckere EMGT, Stal LJ (2000) Interplay between biology and sedimentology in a mudflat (Biezelingse Ham, Westerschelde, The Netherlands). Cont Shelf Res 20:1159–1177

    Article  Google Scholar 

  • de Brouwer JFC, de Deckere EMGT, Stal LJ (2003) Distribution of extracellular carbohydrates in three intertidal mudflats in Western Europe. Estuar Coast Shelf Scince 56:313–324

    Article  CAS  Google Scholar 

  • de Brouwer JFC, Wolfstein K, Ruddy GK, Jones TE, Stal LJ (2005) Biogenic stabilization of intertidal sediments: the importance of extracellular polymeric substances produced by benthic diatoms. Microb Ecol 49:501–512

    Article  CAS  PubMed  Google Scholar 

  • de Jonge VN, Colijn F (1994) Dynamics of microphytobenthos biomass in the Ems estuary. Mar Ecol Prog Ser 104:185–196

    Article  Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol 28:73–153

    Google Scholar 

  • DeFlaun MF, Mayer LM (1983) Relationships between bacteria and grain surfaces in intertidal sediments. Limnol Oceanogr 28:873–881

    Article  Google Scholar 

  • Deloffre J, Lafite R, Lesueur P, Verney R, Lesourd S, Cuvilliez A, Taylor J (2006) Controlling factors of rhythmic sedimentation processes on an intertidal estuarine mudflat - Role of the turbidity maximum in the macrotidal Seine estuary, France. Mar Geol 235:151–164

    Article  Google Scholar 

  • Des Marais DJ (2003) Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere. Biol Bull 204:160–167

    Article  CAS  PubMed  Google Scholar 

  • Diaz RJ, Trefry JH (2006) Comparison of sediment profile image data with profiles of oxygen and Eh from sediment cores. J Mar Syst 62:164–172

    Article  Google Scholar 

  • Donadi S, van der Heide T, van der Zee EM, Eklöf JS, van de Koppel J, Weerman EJ, Piersma T, Olff H, Klemens Eriksson B (2013) Cross-habitat interactions among bivalve species control community structure on intertidal flats. Ecology 94:489–498

    Article  PubMed  Google Scholar 

  • Draut AE, Kineke GC, Huh OK, Grymes JM III, Westphal KA, Moeller CC (2005) Coastal mudflat accretion under energetic conditions, Louisiana chenier-plain coast, USA. Mar Geol 214:27–47

    Article  Google Scholar 

  • Dyer KR (1998) The typology of intertidal mudflats. In: Black KS, Paterson DM, Cramp A (eds) Sedimentary processes in the intertidal zone. Geological Society, London, pp 11–24

    Google Scholar 

  • Dyer KR, Christie MC, Wright EW (2000) The classification of intertidal mudflats. Cont Shelf Res 20:1039–1060

    Article  Google Scholar 

  • Eisma D (1986) Flocculation and de-flocculation of suspended matter in estuaries. Netherlands J Sea Res 20:183–199

    Article  Google Scholar 

  • Fenchel TM, Jørgensen BB (1977) Detritus food chains of aquatic ecosystems: the role of bacteria. In: Alexander M (ed) Advances in microbial ecology. Plenum Press, New York, pp 1–58

    Google Scholar 

  • Fenchel TM, Riedl RJ (1970) The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms. Mar Biol 7:255–268

    Article  CAS  Google Scholar 

  • Fidalgo e Costa P, Brotas V, Cancela da Fonseca L (2002) Physical characterization and microphytobenthos biomass of estuarine and lagoon environments of the Southwest coast of Portugal. Limnetica 21:69–79

    Google Scholar 

  • Flemming BW (2002) Geographic distribution of muddy coasts. In: Healy T, Wang Y, Healy A (eds) Muddy coasts of the World: processes, deposits and function. Elsevier, Amsterdam, pp 99–201

    Chapter  Google Scholar 

  • Flemming BW (2012) Siliciclastic back-barrier tidal flats. In: Davis RA Jr, Dalrymple RW (eds) Principles of tidal sedimentology. Springer, New York, pp 231–267

    Chapter  Google Scholar 

  • Folk RL (1968) Petrology of sedimentary rocks. Hemphills, Austin

    Google Scholar 

  • Galehouse JS (1971) Sedimentation analysis. In: Carver RE (ed) Procedures in sedimentary petrology. Wiley-Interscience, New York, pp 69–94

    Google Scholar 

  • Gao S (2009) Geomorphology and sedimentology of tidal flats. In: Perillo GME, Wolanski E, Cahoon DR, Brinson MM (eds) Coastal wetlands: an integrated ecosystem approach. Elsevier, Amsterdam, pp 295–316

    Google Scholar 

  • Gao S, Zhu DK (1988) The profile of Jiangsu’s mud coast. J Nanjing Univ (Natural Science Version) 21:75–84 (in Chinese, with English abstract)

    Google Scholar 

  • Glockzin M, Zettler ML (2008) Spatial macrozoobenthic distribution patterns in relation to major environmental factors - a case study from the Pomeranian Bay (southern Baltic Sea). J Sea Res 59:144–161

    Article  Google Scholar 

  • Grim RE (1968) Clay mineralogy, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Hansen TA (1994) Metabolism of sulfate-reducing prokaryotes. Antonie van Leeuwenhoek 66:165–185

    Article  CAS  PubMed  Google Scholar 

  • Hayes MO (1979) Barrier island morphology as a function of tidal and wave regime. In: Leatherman SP (ed) Barrier islands. Academic Press, New York, pp 1–27

    Google Scholar 

  • Hsu TJ, Chen SN, Ogston AS (2013a) The landward and seaward mechanisms of fine-sediment transport across intertidal flats in the shallow-water region-A numerical investigation. Cont Shelf Res 60:85–98

    Article  Google Scholar 

  • Hsu WY, Hwung HH, Hsu TJ, Torres-Freyermuth A, Yang RY (2013b) An experimental and numerical investigation on wave-mud interactions. J Geophys Res Oceans 118:1126–1141

    Article  Google Scholar 

  • Hunting ER, Kampfraath AA (2013) Contribution of bacteria to redox potential (Eh) measurements in sediments. Int J Environ Sci Technol 10:55–62

    Article  CAS  Google Scholar 

  • Ingram RL (1971) Sieve analysis. In: Carver RE (ed) Procedures in sedimentary petrology. Wiley-Interscience, New York, pp 47–67

    Google Scholar 

  • Jesus B, Brotas V, Ribeiro L, Mendes CR, Cartaxana P, Paterson DM (2009) Adaptations of microphytobenthos assemblages to sediment type and tidal position. Cont Shelf Res 29:1624–1634

    Article  Google Scholar 

  • Keunen JG (2008) Anammox bacteria: from discovery to application. Nat Rev Microbiol 6:320–326

    Article  CAS  Google Scholar 

  • Kiene RP (1990) Dimethyl sulfide production from dimethylsulfoniopropionate in coastal seawater samples and bacterial cultures. Appl Environ Microbiol 56:3292–3297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirby R (1992) Effects of sea-level rise on muddy coastal margins. In: Prandle D (ed) Dynamics and exchanges in estuaries and the coastal zone. American Geophysical Union, Washington, pp 313–334

    Chapter  Google Scholar 

  • Kirby R (2000) Practical implications of tidal flat shape. Cont Shelf Res 20:1061–1077

    Article  Google Scholar 

  • Kirby R (2002) Distinguishing accretion from erosion-dominated muddy coasts. In: Healy T, Wang Y, Healy A (eds) Muddy coasts of the World: processes, deposits and function. Elsevier, Amsterdam, pp 61–81

    Chapter  Google Scholar 

  • Komada T, Burdige DJ, Li H-L, Magen C, Chanton JP, Cada AK (2016) Organic matter cycling across the sulfate-methane transition zone of the Santa Barbara Basin, California Borderland. Geochim Cosmochim Acta 176:259–278

    Article  CAS  Google Scholar 

  • Komar PD (1998) Beach processes and sedimentation, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Konert M, Vandenberghe J (1997) Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44:523–535

    Article  CAS  Google Scholar 

  • Kristensen E (2000) Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426:1–24

    Article  CAS  Google Scholar 

  • Le Hir P, Roberts W, Cazaillet O, Christie M, Bassoullet P, Bacher C (2000) Characterization of intertidal flat hydrodynamics. Cont Shelf Res 20:1433–1459

    Article  Google Scholar 

  • Libes SM (1992) An introduction to marine biogeochemistry. Wiley, New York

    Google Scholar 

  • Lisboa Cohen MC, Ruiz Pessenda LC, Behling H, Rossetti DF, França MC, Guimarães JTF, Friaes Y, Beltrão Smith C (2012) Holocene palaeoenvironmental history of the Amazonian mangrove belt. Q Sci Rev 55:50–58

    Article  Google Scholar 

  • Ljungdahl LG, Eriksson K-E (1985) Ecology of microbial cellulose degradation. In: Marshall KC (ed) Advances in microbial ecology. Plenum Press, New York, pp 237–299

    Chapter  Google Scholar 

  • Llobet-Brossa E, Rabus R, Böttcher ME, Könneke M, Finke N, Schramm A, Meyer RL, Grötzschel S, Rosselló-Mora R, Amann R (2002) Community structure and activity of sulfate-reducing bacteria in an intertidal surface sediment: a multi-method approach. Aquat Microb Ecol 29:211–226

    Article  Google Scholar 

  • Lovelock JE, Maggs RJ, Rasmussen RA (1972) Atmospheric dimethyl sulfide and the natural sulfur cycle. Nature 237:452–453

    Article  CAS  Google Scholar 

  • MacIntyre HL, Geider RJ, Miller DC (1996) Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries 19:186–201

    Article  Google Scholar 

  • Madsen KN, Nilson P, Sundbäck K (1993) The influence of benthic microalgae on the stability of a subtidal shallow water sediment. J Exp Mar Biol Ecol 170:159–177

    Article  Google Scholar 

  • Mann KH (2009) Ecology of coastal waters: with implications for management, 2nd edn. Blackwell Science, Malden

    Google Scholar 

  • Manning AJ, Langston WJ, Jonas PJC (2010) A review of sediment dynamics in the Severn Estuary: influence of flocculation. Mar Pollut Bull 61:37–51

    Article  CAS  PubMed  Google Scholar 

  • McCave IN, Bryant RJ, Cook HF, Coughanowr CA (1986) Evaluation of a laser-diffraction-size analyzer for use with natural sediments. J Sediment Petrol 56:561–564

    Article  Google Scholar 

  • Metha AJ (2002) Mudshore dynamics and controls. In: Healy T, Wang Y, Healy A (eds) Muddy coasts of the World: processes, deposits and function. Elsevier, Amsterdam, pp 19–60

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) Wetlands, 3rd edn. Wiley, New York

    Google Scholar 

  • Molongoski JJ, Klug MJ (1976) Characterization of anaerobic heterotrophic bacteria isolated from freshwater lake sediments. Appl Environ Microbiol 31:83–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moodley L, Van der Zwaan GJ, Rutten GMW, Boom RCE, Kempers AJ (1998) Subsurface activity of benthic Foraminifera in relation to porewater oxygen content: laboratory experiments. Mar Micropaleontol 34:91–106

    Article  Google Scholar 

  • Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–184

    Article  CAS  Google Scholar 

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454

    Article  CAS  PubMed  Google Scholar 

  • Noffke N (1998) Multidirected ripple marks rising from biological and sedimentological processes in modern lower supratidal deposits (Mellum Island, southern North Sea). Geology 26:879–882

    Article  Google Scholar 

  • Noffke N, Christian D, Wacey D, Hazen RM (2013a) Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser formation, Pilbara, Western Australia. Astrobiology 13:1103–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noffke N, Decho AW, Stoodley P (2013b) Slime through time: the fossil record of prokaryote evolution. Palaios 28:1–5

    Article  Google Scholar 

  • Oliveira Fernandes S, Javanaud C, Michotey VD, Guasco S, Anschutz P, Bonin P (2016) Coupling of bacterial nitrification with denitrification and anammox supports N removal in intertidal sediments (Arcachon Bay, France). Estuar Coast Shelf Sci 179:39–50

    Article  CAS  Google Scholar 

  • Owens NJ, Christofi N, Stewart WD (1979) Primary production and nitrogen cycling in an estuarine environment. Cyclic phenomena in marine plants and animals. In: Proceedings of the 13th European marine biology symposium, Isle of Man, 27 Sept–4 Oct 1978

    Google Scholar 

  • Pan J, Bournod CN, Cuadrado DG, Vitale A, Piccolo MC (2013a) Interaction between estuarine microphytobenthos and physical forcings: the role of atmospheric and sedimentary factors. Int J Geosci 4:352–361

    Article  Google Scholar 

  • Pan J, Bournod CN, Pizani NV, Cuadrado DG, Carmona NB (2013b) Characterization of microbial mats from a siliciclastic tidal flat (Bahía Blanca estuary, Argentina). Geomicrobiol J 30:665–674

    Article  CAS  Google Scholar 

  • Pan J, Cuadrado DG, Bournod CN (2017) Diatom-driven recolonization of microbial-mat dominated siliciclastic tidal flat sediments. FEMS Microbiol Ecol 93:fix111

    Google Scholar 

  • Paterson DM, Black KS (1999) Water flow, sediment dynamics and benthic biology. Adv Ecol Res 29:155–193

    Article  Google Scholar 

  • Pejrup M, Larsen M, Edelvang K (1997) A fine grained sediment budget for the Sylt-Rømø tidal basin. Helgoländer Meeresuntersuchungen 51:253–268

    Article  Google Scholar 

  • Pereira PS, Calliari LJ, Holman R, Holland KT, Guedes RMC, Amorin CK, Cavalcanti PG (2011) Video and field observations of wave attenuation in a muddy surf zone. Mar Geol 279:210–221

    Article  Google Scholar 

  • Postma H (1961) Transport and accumulation of suspended matter in the Dutch Wadden Sea. Netherlands J Sea Res 1:148–190

    Article  Google Scholar 

  • Pritchard D (2005) Suspended sediment transport along an idealised tidal embayment: settling lag, residual transport and the interpretation of tidal signals. Ocean Dyn 55:124–136

    Article  Google Scholar 

  • Pritchard D, Hogg AJ (2003) Cross-shore sediment transport and the equilibrium morphology of mudflats under tidal currents. J Geophys Res 108:1–15

    Article  Google Scholar 

  • Ransom B, Bennett RJ, Baerwald R, Shea K (1997) TEM study of in situ OM on continental shelf margins: occurrence and the “monolayer” hypothesis. Mar Geol 138:1–9

    Article  CAS  Google Scholar 

  • Reddy KR, DeLaune RD (2008) Biogeochemistry of wetlands: science and applications. CRC, Boca Raton

    Book  Google Scholar 

  • Richards FA (1965) Anoxic basins and fjords. Chemical oceanography. Academic Press, London

    Google Scholar 

  • Riethmüller R, Heineke M, Kühl H, Keuker-Rüdiger R (2000) Chlorophyll a concentration as an index of sediment surface stabilisation by microphytobenthos? Cont Shelf Res 20:1351–1372

    Article  Google Scholar 

  • Roberts W, Le Hir P, Whitehouse RJS (2000) Investigation using simple mathematical models of the effect of tidal currents and waves on the profile shape of intertidal mudflats. Cont Shelf Res 20:1079–1097

    Article  Google Scholar 

  • Rogers KG, Goodbred SL Jr (2014) The Sundarbans and Bengal Delta: the World’s largest tidal mangrove and delta system. In: Kale VS (ed) Landscapes and landforms of India. Springer, Dordrecht, pp 181–187

    Chapter  Google Scholar 

  • Rosenberg R, Grémare A, Duchêne JC, Frank M (2008) 3D visualization and quantification of marine benthic biogenic structures and particle transport utilizing computer-aided tomography. Mar Ecol Prog Ser 363:171–182

    Article  Google Scholar 

  • Seuront L, Spilmont N (2002) Self-organized criticality in intertidal microphytobenthos patch patterns. Phys A 313:513–539

    Article  CAS  Google Scholar 

  • Shchepetkina A, Gingras MK, Zonneveld JP, Pemberton SG (2016) Sedimentary fabrics of the macrotidal, mud-dominated, inner estuary to fluvio-tidal transition zone, Petitcodiac River estuary, New Brunswick, Canada. Sediment Geol 333:147–163

    Article  Google Scholar 

  • Solan M, Kennedy R (2002) Observation and quantification of in situ animal-sediment relations using timelapse sediment profile imagery (t-SPI). Mar Ecol Prog Ser 228:179–191

    Article  Google Scholar 

  • Staats N, Stal LJ, de Winder B, Lr M (2000a) Oxygenic photosynthesis as driving process in exopolysaccharide production of benthic diatoms. Mar Ecol Prog Ser 193:261–269

    Article  CAS  Google Scholar 

  • Staats N, Stal LJ, Mur LR (2000b) Exopolysaccharide production by the epipelic diatom Cylindrotheca closterium: effects of nutrient conditions. J Exp Mar Biol Ecol 249:13–27

    Article  CAS  PubMed  Google Scholar 

  • Stal LJ (2010) Microphytobenthos as a biogeomorphological force in intertidal sediment stabilization. Ecol Eng 36:236–245

    Article  Google Scholar 

  • Stal LJ, de Brouwer JFC (2003) Biofilm formation by benthic diatoms and their influence on the stabilization of intertidal mudflats. Berichte-Forschungszentrum Terramare 12:109–111

    Google Scholar 

  • Stal LJ, de Brouwer JFC (2005) Diatom biofilms and the stability of intertidal mudflats. Geophys Res Abstr 7:20–28

    Google Scholar 

  • Stoodley P (2016) Biofilms: flow disrupts communication. Nat Microbiol 1:1–2

    Article  CAS  Google Scholar 

  • Sturdivant SK, Díaz RJ, Cutter GR (2012) Bioturbation in a declining oxygen environment, in situ observations from Wormcam. PLoS One 7:e34539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sundbäck K, Miles A, Hulth S, Svenson A (2003) Importance of benthic nutrient regeneration during initiation of macroalgal blooms in shallow bays. Mar Ecol Prog Ser 246:115–126

    Article  Google Scholar 

  • Sundby B, Anderson LG, Hall POJ, Iverfeldt A, Rutgers van der Loeff MM, Westerlund SFG (1986) The effect of oxygen on release and uptake of cobalt, manganese, iron and phosphate at the sediment-water interface. Geochim Cosmochim Acta 50:1281–1288

    Article  CAS  Google Scholar 

  • Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol 68:1312–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomsen TR, Finster K, Ramsing NB (2001) Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl Environ Microbiol 67:1646–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tice MM, Lowe DR (2004) Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431:549–552

    Article  CAS  PubMed  Google Scholar 

  • Tiedje JM (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonia. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 197–244

    Google Scholar 

  • Tiedje JM, Sexstone AJ, Myrold DD, Robinson JA (1982) Denitrification: ecological niches, competition and survival. Antonie van Leeuwenhoek 48:569–583

    Article  CAS  PubMed  Google Scholar 

  • Underwood GJC (1994) Seasonal and spatial variation in epipelic diatom assemblages in the Severn Estuary. Diatom Res 9:451–472

    Article  Google Scholar 

  • Underwood GJC, Paterson DM (1993) Seasonal changes in diatom biomass, sediment stability and biogenic stabilization in the Severn Estuary. J Mar Biol Assoc UK 73:871–887

    Article  Google Scholar 

  • Valdemarsen T, Kristensen E, Holmer M (2009) Metabolic threshold and sulfide-buffering in diffusion controlled marine sediments impacted by continuous organic enrichment. Biogeochemistry 95:335–353

    Article  CAS  Google Scholar 

  • van Maren DS, Winterwerp JC (2013) The role of flow asymmetry and mud properties on tidal flat sedimentation. Cont Shelf Res 60S:71–84

    Article  Google Scholar 

  • Vepraskas MJ, Faulkner SP (2001) Redox chemistry of hydric soils. In: Richardson JL, Vepraskas MJ (eds) Wetland soils: genesis, hydrology, landscapes and classification. Lewis, Boca Raton, pp 85–105

    Google Scholar 

  • Verney R, Lafite R, Brun-Cottan J-C (2009) Flocculation potential of estuarine particles: the importance of environmental factors and of the spatial and seasonal variability of suspended particulate matter. Estuar Coasts 32:678–693

    Article  CAS  Google Scholar 

  • Vos PC, de Wolf H (1993) Diatoms as a tool for reconstructing sedimentary environments in coastal wetlands; methodological aspects. Hydrobiologia 269(270):285–296

    Article  Google Scholar 

  • Wang Y (1983) The mudflat system of China. Can J Fish Aquat Sci 40(S1):160–171

    Article  Google Scholar 

  • Wang P (2012) Principles of sediment transport applicable in tidal environments. In: Davis RA Jr, Dalrymple RW (eds) Principles of tidal sedimentology. Springer, New York, pp 19–35

    Chapter  Google Scholar 

  • Wang Y, Healy T (2002) Definition, properties, and classification of muddy coasts. In: Healy T, Wang Y, Healy A (eds) Muddy coasts of the World: processes, deposits and function. Elsevier, Amsterdam, pp 9–18

    Chapter  Google Scholar 

  • Watermann F, Hillebrand H, Gerdes G, Krumbein WE, Sommer U (1999) Competition between benthic cyanobacteria and diatoms as influenced by different grain sizes and temperatures. Mar Ecol Prog Ser 187:77–87

    Article  Google Scholar 

  • Webster IT, Ford PW, Hodgson B (2002) Microphytobenthos contribution to nutrient-phytoplankton dynamics in a shallow coastal lagoon. Estuaries 25:540–551

    Article  CAS  Google Scholar 

  • Wells JT (1983) Dynamics of coastal fluid muds in low-, moderate-, and high-tide-range environments. Can J Fish Aquat Sci 40:130–142

    Article  Google Scholar 

  • Wells JT, Shanks AL (1987) Observations and geologic significance of marine snow in a shallow-water, partially enclosed marine embayment. J Geophys Res 92:13185–13190

    Article  Google Scholar 

  • Wiese W, Rheinheimer G (1978) Scanning electron microscopy and epifluorescence investigation of bacterial colonization of marine sand sediments. Microb Ecol 4:175–188

    Article  Google Scholar 

  • Wilson CA, Goodbred SL Jr (2015) Construction and maintenance of the Ganges-Brahmaputra-Meghna Delta: linking process, morphology, and stratigraphy. Annu Rev Mar Sci 7:67–88

    Article  Google Scholar 

  • Winterwerp JC (2002) On the flocculation and settling velocity of estuarine mud. Cont Shelf Res 22:1339–1360

    Article  Google Scholar 

  • Wolanski E (2006) The sediment trapping efficiency of the macro-tidal Daly Estuary, tropical Australia. Estuar Coast Shelf Sci 69:291–298

    Article  Google Scholar 

  • Wolanski E, Chappell J, Ridd P, Vertessy R (1988) Fluidization of mud in estuaries. J Geophys Res 93:2351–2361

    Article  Google Scholar 

  • Yang X, Zhang Q, Zhang J, Tan F, Wu Y, Zhang N, Yang H, Pang Q (2015) An integrated model for three-dimensional cohesive sediment transport in storm event and its application on Lianyungang Harbor, China. Ocean Dyn 65:395–417

    Article  Google Scholar 

  • Yao H (2013) Characterizing landuse changes in 1990-2010 in the coastal zone of Nantong, Jiangsu province, China. Ocean Coast Manage 71:108–115

    Article  Google Scholar 

  • Zhang Q, Gong Z, Zhang C, Townend I, Jin C, Li H (2016) Velocity and sediment surge: what do we see at times of very shallow water on intertidal mudflats? Cont Shelf Res 113:10–20

    Article  CAS  Google Scholar 

  • Zheng Y, Hou L, Liu M, Liu Z, Li X, Lin X, Yin G, Gao J, Yu C, Wang R, Jiang X (2016) Tidal pumping facilitates dissimilatory nitrate reduction in intertidal marshes. Sci Rep 6:21338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ZoBell CE, Feltham CB (1942) The bacterial flora of a marine mud flat as an ecological factor. Ecology 23:69–78

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pan, J., Pratolongo, P.D., Cuadrado, D.G. (2018). Geological, Physical and Chemical Foundations. In: Beninger, P. (eds) Mudflat Ecology. Aquatic Ecology Series, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-99194-8_2

Download citation

Publish with us

Policies and ethics