Skip to main content

Quantitative Considerations in Mudflat Ecology

  • Chapter
  • First Online:
Mudflat Ecology

Part of the book series: Aquatic Ecology Series ((AQEC,volume 7))

Abstract

Basic themes relevant to quantitative mudflat ecology are presented and explored, with examples: classical and informed-probability statistics, spatial and temporal analyses, allometric modelling, replication and pseudoreplication. The common thread is the necessity of evaluating evidence to arrive at a judgement of scientific credibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaike H (1981) Likelihood of a model and information criteria. J Econ 16:3–14

    Article  Google Scholar 

  • Allen AP, Gillooly JF, Brown JH (2005) Linking the global carbon cycle to individual metabolism. Funct Ecol 19:202–213

    Article  Google Scholar 

  • Andrades R, Joyeux J-C, Andrade JM, Machado FS, Reis-Filho JA, Macieira RM, Giarrizzo T (2018) Filling the gap: length-weight and lengthlength relationships of intertidal endemic fishes of the Brazilian Province Oceanic Islands. J Appl Ichthyol 34(3):720–723

    Article  Google Scholar 

  • Aspden RJ, Vardy S, Perkins RG, Davidson IR, Bates R, Paterson DM (2004) The effects of clam fishing on the properties of surface sediments in the lagoon of Venice, Italy. Hydrol Earth Syst Sci 8:160–169

    Article  Google Scholar 

  • Bachmaier M, Backes M (2008) Variogram or semivariogram? Understanding the variances in a variogram. Precis Agric 9:173–175

    Article  Google Scholar 

  • Ballantyne F (2013) Evaluating model fit to determine if logarithmic transformations are necessary in allometry: a comment on the exchange between Packard (2009) and Kerkhoff and Enquist (2009). J Theor Biol 317:418–421

    Article  PubMed  Google Scholar 

  • Beninger PG, Boldina I (2014) Fine-scale spatial distribution of the temperate infaunal bivalve Tapes (=Ruditapes) philippinarum (Adams and Reeve) on fished and unfished intertidal mudflats. J Exp Mar Biol Ecol 457:128–134

    Article  Google Scholar 

  • Beninger PG, Boldina I, Katsanevakis S (2012) Strengthening statistical usage in marine ecology. J Exp Mar Biol Ecol 426-427:97–108

    Article  Google Scholar 

  • Blauw A, Benincà E, Laane R, Greenwood N, Huisman J (2012) Dancing with the tides: fluctuations of coastal phytoplankton orchestrated by different oscillatory modes of the tidal cycle. PLoS One 7(11):e49319. https://doi.org/10.41371/journal.pone.0049319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boardman RC, Vann JE (2011) A review of the application of copulas to improve modelling of nonbigaussian bivariate relationships (with an example using geological data). In: Proceedings of the19th international congress on modelling and simulation. The Modelling and Simulation Society of Australia and NZ, Perth, pp 627–633

    Google Scholar 

  • Boldina I, Beninger PG (2013) Fine-scale spatial structure of the exploited infaunal bivalve Cerastoderma edule on the French Atlantic coast. J Sea Res 76:193–200

    Article  Google Scholar 

  • Boldina I, Beninger PG (2014) Fine-scale spatial distribution of the common lugworm Arenicola marina, and effects of intertidal clam fishing. Estuar Coast Shelf Sci 143:32–40

    Article  Google Scholar 

  • Boldina I, Beninger PG, Le Coz M (2014) Effect of long-term mechanical perturbation on intertidal soft-bottom meiofunal community spatial structure. J Sea Res 85:85–91

    Article  Google Scholar 

  • Boldina I, Beninger PG (2016) Strengthening statistical usage in marine ecology: linear regression. J Exp Mar Biol Ecol 474:81–91

    Article  Google Scholar 

  • Bradshaw GA, Spies TA (1992) Characterizing canopy gap structure in forests using wavelet analysis. J Ecol 80:205–215

    Article  Google Scholar 

  • Broughton SA, Bryan KM (2009) Discrete Fourier analysis and wavelets. Applications to signal and image processing. Wiley, Hoboken, 360 p

    Google Scholar 

  • Brown B, Herbert Wilson Jr W (1997) The role of commercial digging of mudflats as an agent for change of infaunal intertidal populations. J Exp Mar Biol Ecol 218:49–61

    Article  Google Scholar 

  • Burnham K, Anderson D (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York, 514 p

    Google Scholar 

  • Carpenter SR (1990) Large-scale perturbations: opportunities for innovation. Ecology 71:2038–2043

    Article  Google Scholar 

  • Carpenter SR (1998) The need for large-scale experiments to assess and predict the response of ecosystems to perturbation. In: Groffman P (ed) Successes, limitations, and frontiers in ecosystem science. Springer, New York, pp 287–312

    Chapter  Google Scholar 

  • Carrière JF (2006) Copulas. In: Sundt B, Teugels JL (eds) Encyclopedia of actuarial science. Wiley, Chichester, 1944 p

    Google Scholar 

  • Chapman MG, Tolhurst TJ, Murphy RJ, Underwood AJ (2010) Complex and inconsistent patterns of variation in benthos, micro-algae and sediment over multiple spatial scales. Mar Ecol Prog Ser 398:33–47

    Article  CAS  Google Scholar 

  • Chatfield C (2016) The analysis of time series: an introduction, 6th edn. Chapman & Hall/CRC, Boca Raton, 333 p

    Google Scholar 

  • Christensen R (2005) Testing Fisher, Neyman, Pearson, and Bayes. Am Stat 59:121–126

    Article  Google Scholar 

  • Cleary DR (2003) An examination of scale of assessment, logging and ENSO-induced fires on butterfly diversity in Borneo. Oecologia 135:313–321

    Article  PubMed  Google Scholar 

  • Cliff AD, Ord JK (1981) Spatial processes: models and applications. Pion, London, 266 p

    Google Scholar 

  • Cottenie K, De Meester L (2003) Comment to Oksanen (2001): reconciling Oksanen (2001) and Hurlbert (1984). Oikos 100:394–396

    Article  Google Scholar 

  • Colegrave N, Ruxton GD (2018) Using biological insight and pragmatism when thinking about pseudoreplication. Trends Ecol Evol 33:28–35

    Article  PubMed  Google Scholar 

  • Cressie N (2015) Statistics for spatial data, Revised edition. Wiley-Interscience, New York, 928 p

    Google Scholar 

  • Cressie NK, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, Hoboken, 624 p

    Google Scholar 

  • Cryer JD, Chan KS (2008) Time series regression models. In: Cryer JD, Chan KS (eds) Time series analysis with applications in R. Springer, New York, pp 249–276

    Chapter  Google Scholar 

  • Dale MRT, Fortin MJ (2009) Spatial autocorrelation and statistical tests: some solutions. J Agric Biol Environ Stat 14:188–206

    Article  Google Scholar 

  • Dale MRT, Fortin M-J (2014) Spatial analysis: a guide for ecologists, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dale MRT, Mah M (1998) The use of wavelets for spatial pattern analysis in ecology. J Veg Sci 9:805–814

    Article  Google Scholar 

  • Dale MRT, Dixon P, Fortin MJ, Legendre P, Myers DE, Rosenberg MS (2002) Conceptual and mathematical relationships among methods for spatial analysis. Ecography 25:558–577

    Article  Google Scholar 

  • Daubechies I (1988) Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math 41:909–996

    Article  Google Scholar 

  • Davies GM, Gray A (2015) Don’t let spurious accusations of pseudoreplication limit our ability to learn from natural experiments (and other messy kinds of ecological monitoring). Ecol Evol 5:5295–5304

    Article  PubMed  PubMed Central  Google Scholar 

  • de la Peña VH, Ibragimov R, Sharakhmetov S (2006) Characterizations of joint distributions, copulas, information, dependence and decoupling, with applications to time series. Lecture Notes-Monograph Series. The Second Erich L. Lehmann Symposium Institute of Mathematical Statistics, Optimality, pp 183–209

    Google Scholar 

  • Diggle PJ (2014) Statistical analysis of spatial and spatio-temporal point patterns. CRC Press, Boca Raton, 268 p

    Google Scholar 

  • Dungan JL, Perry JN, Dale MRT, Legendre P, Citron-Pousty S, Fortin MJ, Jakomulska A, Miriti M, Rosenberg MS (2002) A balanced view of scale in spatial statistical analysis. Ecography 25:626–640

    Article  Google Scholar 

  • Efron B (2013) Bayes’ theorem in the 21st century. Science 340:1177–1178

    Article  PubMed  Google Scholar 

  • Elliott KH, Bull RD, Gaston AJ, Davoren GK (2009) Underwater and above-water search patterns of an Arctic seabird: reduced searching at small spatiotemporal scales. Behav Ecol Sociobiol 63:1773–1785

    Article  Google Scholar 

  • Falk D, Lepore F, Noe A (2012) The cerebral cortex of Albert Einstein: a description and preliminary analysis of unpublished photographs. Brain 136(Pt 4):1304–1327. https://doi.org/10.1093/brain/aws295

    Article  PubMed  PubMed Central  Google Scholar 

  • Farrell-Gray CC, Gotelli NJ (2005) Allometric exponents support a 3/4-power scaling law. Ecology 86:2083–2087

    Article  Google Scholar 

  • Ferriere R, Cazelles B (1999) Universal power laws govern intermittent rarity in communities of interacting species. Ecology 80:1505–1521

    Article  Google Scholar 

  • Finkenstadt B, Held L, Isham V (2006) Statistical methods for spatio-temporal systems. CRC Press, Boca Raton, 286 p

    Book  Google Scholar 

  • Flanagan AM, Flood RD, Frisk MG, Garza CD, Lopez GR, Maher NP, Cerrato RM (2018) The relationship between observational scale and explained variance in benthic communities. PLoS One 13:e0189313. https://doi.org/10.1371/journal.pone.0189313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flandrin P, Gonçalves P, Abry P (2010) Scale Invariance and Wavelets. In: Abry P, Gonçalves P, Véhel JL (eds) Scaling. Fractals and Wavelets, Wiley Online Library, pp 71–102

    Google Scholar 

  • Forstmeier W, Wagenmakers EJ, Parker TH (2016) Detecting and avoiding likely false-positive findings—a practical guide. Biol Rev 92:1941–1968. https://doi.org/10.1111/brv.12315

    Article  PubMed  Google Scholar 

  • Fortin MJ, Dale MRT (2005) Spatial analysis: a guide for ecologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Fortin MJ, Dale M (2009) Spatial autocorrelation in ecological studies: a legacy of solutions and myths. Geogr Anal 41:392–397

    Article  Google Scholar 

  • Fortin MJ, Jacquez GM (2000) Randomization tests and spatially auto-correlated data. Bull Ecol Soc Am 81:201–205

    Google Scholar 

  • Fortin MJ, Drapeau P, Legendre P (1989) Spatial autocorrelation and sampling design in plant ecology. Vegetatio 83:209–222

    Article  Google Scholar 

  • Fortin MJ, Dale MRT, ver Hoef J (2002) Spatial analysis in ecology. In: El-Shaarawi AH, Piegorsch WW (eds) Encyclopedia of environmetrics. Wiley, Chichester, pp 2051–2058

    Google Scholar 

  • Fortin MJ, James PMA, MacKenzie A, Melles SJ, Rayfield B (2012) Spatial statistics, spatial regression, and graph theory in ecology. Spatial Stat 1:100–109

    Article  Google Scholar 

  • Getis A (2007) Reflections on spatial autocorrelation. Reg Sci Urban Econ 37:491–496

    Article  Google Scholar 

  • Getis A (2008) A history of the concept of spatial autocorrelation: a geographer’s perspective. Geogr Anal 40:297–309

    Article  Google Scholar 

  • Getis A (2010) Spatial Autocorrelation. In: Fischer MM, Getis A (eds) Handbook of applied spatial analysis: software tools, methods and applications. Springer, Berlin, pp 255–278

    Chapter  Google Scholar 

  • Glover DM, Jenkins WJ, Doney SC (2011) Modeling methods for marine science. Cambridge University Press, Cambridge, 588 p

    Book  Google Scholar 

  • Gouhier T (2014) Biwavelet: Conduct univariate and bivariate wavelet analyses (Version 0.14). http://biwavelet.r-forge.r-project.org

  • Greig-Smith P (1952) The use of random and contiguous quadrats in the study of the structure of plant communities. Ann Bot 16:293–316

    Article  Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11:561–566

    Article  Google Scholar 

  • Haining R (2003) Spatial data analysis: theory and practice. Cambridge University Press, Cambridge, 452 p

    Book  Google Scholar 

  • Harte J (2011) Maximum entropy and ecology: a theory of abundance, distribution, and energetics. Oxford University Press, New York, 256 p

    Book  Google Scholar 

  • Hassler SK, Lark RM, Milne AE, Elsenbeer H (2011) Exploring the variation in soil saturated hydraulic conductivity under a tropical rainforest using the wavelet transform. Eur J Soil Sci 62:891–901

    Article  Google Scholar 

  • Hawkins BA (2012) Eight (and a half) deadly sins of spatial analysis. J Biogeogr 39:1–9

    Article  Google Scholar 

  • Hayes AF, Cai L (2007) Using heteroskedasticity-consistent standard error estimators in OLS regression: An introduction and software implementation. Behav Res Methods 39:709–722

    Article  PubMed  Google Scholar 

  • Heffner RA, Butler MJ, Reilly CK (1996) Pseudoreplication revisited. Ecology 77:2558–2562

    Article  Google Scholar 

  • Hewitt C, Campbell ML, Davidson AD (2016) Deciphering p-values: beware false certainty. Science 353:551

    Article  CAS  PubMed  Google Scholar 

  • Hixon MA, Tissot BN (2007) Comparison of trawled vs untrawled mud seafloor assemblages of fishes and macroinvertebrates at Coquille Bank, Oregon. J Exp Mar Biol Ecol 344:23–34

    Article  Google Scholar 

  • Hooker RH (1905) On the correlation of successive observations. J R Stat Soc 68:696–703

    Article  Google Scholar 

  • Hubbard R, Bayarri MJ (2003) Confusion over measures of evidence (p’s) versus errors (α’s) in classical statistical testing. Am Stat 57:171–182

    Article  Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211

    Article  Google Scholar 

  • Hurlbert SH (2004) On misinterpretations of pseudoreplication and related matters: a reply to Oksanen. Oikos 104:591–597

    Article  Google Scholar 

  • Isler K, Barbour AD, Martin RD (2002) Line-fitting by rotation: a nonparametric method for bivariate allometric analysis. Biom J 44:289–304

    Article  Google Scholar 

  • James PMA, Fortin M-J (2013) Ecosystems and spatial patterns. In: Leemans R (ed) Ecological systems: selected entries from the encyclopedia of sustainability science and technology. Springer Science+Business Media, New York, pp 101–124

    Chapter  Google Scholar 

  • James PMA, Sturtevant BR, Townsend P, Wolter P, Fortin MJ (2011) Two-dimensional wavelet analysis of spruce budworm host basal area in the Border Lakes landscape. Ecol Appl 21:2197–2209

    Article  PubMed  Google Scholar 

  • Joe H (1994) Multivariate extreme-value distributions with applications to environmental data. Can J Stat 22:47–64

    Article  Google Scholar 

  • Johnson DH (1999) The insignificance of statistical significance testing. J Wildl Manag 63:763–772

    Article  Google Scholar 

  • Johnson VE (2013) Revised standards for statistical evidence. Proc Natl Acad Sci 110:19313–19317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsanevakis S (2006) Modelling fish growth: model selection, multi-model inference and model selection uncertainty. Fish Res 81:229–235

    Article  Google Scholar 

  • Katsanevakis S, Thessalou-Legaki M, Karlou-Riga C, Lefkaditou E, Dimitriou E, Verriopoulos G (2007a) Information-theory approach to allometric growth of marine organisms. Mar Biol 151:949–959

    Article  Google Scholar 

  • Katsanevakis S, Xanthopoulos J, Protopapas N, Verriopoulos G (2007b) Oxygen consumption of the semi-terrestrial crab Pachygrapsus marmoratus in relation to body mass and temperature: an information theory approach. Mar Biol 151:343–352

    Article  Google Scholar 

  • Kershaw KA (1973) Quantitative and dynamic plant ecology. Edward Arnold, London, pp 128–137

    Google Scholar 

  • Kershaw JJ, Richards E, McCarter J, Oborn S (2010) Spatially correlated forest stand structures: a simulation approach using copulas. Comput Electron Agric 74:120–128

    Article  Google Scholar 

  • Kim JM, Jung Y, Sungur EA, Han K, Park C, Sohn I (2008) A copula method for modeling directional dependence of genes. BioMed Central Bioinform 9:225

    Google Scholar 

  • Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–353

    Article  CAS  Google Scholar 

  • Kotze DJ, Johnson CA, O'Hara RB, Vepsäläinen K, Fowler MS (2004) Editorial: The Journal of Negative Results in Ecology and Evolutionary Biology. J Negat Results Ecol Evol Biol 1:1–5

    Google Scholar 

  • Kraan C, van der Meer J, Dekinga A, Piersma T (2009) Patchiness of macrobenthic invertebrates in homogenized intertidal habitats: hidden spatial structure at a landscape scale. Mar Ecol Prog Ser 383:211–224

    Article  Google Scholar 

  • Lark RM, Webster R (2001) Changes in variance and correlation of soil properties with scale and location: analysis using an adapted maximal overlap discrete wavelet transform. Eur J Soil Sci 52:547–562

    Article  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  • Legendre P, Fortin MJ (1989) Spatial pattern and ecological analysis. Vegetatio 80:107–138

    Article  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology. Developments in environmental modelling, vol 24, 3rd edn. Elsevier, Amsterdam, 1006 p

    Google Scholar 

  • Legendre P, Dale MRT, Fortin MJ, Gurevitch J, Hohn M, Myers D (2002) The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25:601–615

    Article  Google Scholar 

  • Legendre P, Fortin MJ, Borcard D (2015) Should the Mantel test be used in spatial analysis? Methods Ecol Evol 6:1239–1247

    Article  Google Scholar 

  • Long JS, Ervin LH (2000) Using heteroscedasticity consistent standard errors in the linear regression model. Am Stat 54:217–224

    Google Scholar 

  • Margolis L, Esch GW, Holmes JC, Kuris AM, Schad GA (1982) The use of ecological terms in parasitology. J Parasitol 68:131–133

    Article  Google Scholar 

  • Matheron G (1965) Les variables régionalisées et leur estimation: une application de la théorie des fonctions aléatoires aux sciences de la nature. Masson et Cie, Paris, 305 p

    Google Scholar 

  • McIntyre AD, Elliot JM, Ellis DV (1984) Introduction: design of sampling programmes. In: Holme NA, McIntyre AD (eds) Methods for the study of marine Benthos. Wiley-Blackwell, Oxford, pp 1–26

    Google Scholar 

  • Men W, Falk D, Sun T, Chen W, Li J, Yin D, Zang L, Fan M (2014) The corpus callosum of Albert Einstein’s brain: another clue to his high intelligence? Brain 137:e268. https://doi.org/10.1093/brain/awt252

    Article  PubMed  Google Scholar 

  • Mi X, Ren H, Ouyang Z, Wei W, Ma K (2005) The use of the Mexican Hat and the Morlet wavelets for detection of ecological patterns. Plant Ecol 179:1–19

    Article  Google Scholar 

  • Millar R, Anderson M (2004) Remedies for pseudoreplication. Fish Res 70:397–407

    Article  Google Scholar 

  • Moore J, Grinsted A, Jevrejeva S (2006) Is there evidence for sunspot forcing of climate at multi-year and decadal periods? Geophys Res Lett 33:1–5

    Google Scholar 

  • Murphy RJ, Tolhurst TJ, Chapman MG, Underwood AJ (2008) Spatial variation of chlorophyll on estuarine mudflats determined by field-based remote sensing. Mar Ecol Prog Ser 365:45–55

    Article  CAS  Google Scholar 

  • Nason GP, von Sachs R (1999) Wavelets in time series analysis. Philos Trans A 357:2511–2526

    Article  Google Scholar 

  • Newell RIE, Bayne BL (1980) Seasonal changes in the physiology, reproductive condition and carbohydrate content of the cockle Cardium (= Cerastoderma) edule (Bivalvia: Cardiidae). Mar Biol 56:11–19

    Article  CAS  Google Scholar 

  • Newman M (2005) Power laws, Pareto distributions and Zipf’s law. Contemp Phys 46:323–351

    Article  Google Scholar 

  • Oksanen L (2001) Logic of experiments in ecology: is pseudoreplication a pseudoissue? Oikos 94:27–38

    Article  Google Scholar 

  • Oksanen L (2004) The devil lies in details: reply to Stuart Hurlbert. Oikos 104:598–605

    Article  Google Scholar 

  • Oliver M, Webster R, Gerrard J (1989) Geostatistics in physical geography. Part I: Theory. Trans Inst Br Geogr 14:259–269

    Article  Google Scholar 

  • Owhadi H, Scovel C, Sullivan T (2015) Brittleness of Bayesian inference under finite information in a continuous world. Electron J Stat 9:1–79

    Article  Google Scholar 

  • Packard GC (2012a) Is non-loglinear allometry a statistical artifact? Biol J Linn Soc 107:764–773

    Article  Google Scholar 

  • Packard GC (2012b) Julian Huxley, Uca pugnax and the allometric method. J Exp Biol 125:569–573

    Article  Google Scholar 

  • Packard GC (2016) Relative growth by the elongated jaws of gars: a perspective on polyphasic loglinear allometry. J Exp Zool (Mol Devel Evol) 326B:168–175

    Article  Google Scholar 

  • Packard GC (2017) The essential role for graphs in allometric analysis. Biol J Linn Soc 120:468–473

    Google Scholar 

  • Packard GC, Birchard GF (2008) Traditional allometric analysis fails to provide a valid predictive model for mammalian metabolic rates. J Exp Biol 211:3581–3587

    Article  PubMed  Google Scholar 

  • Phillips F (2016) Deciphering p-values: defining significance. Science 353:551

    CAS  PubMed  Google Scholar 

  • Pitt WC, Ritchie ME (2002) Influence of prey distribution on the functional response of lizards. Oikos 96:157–163

    Article  Google Scholar 

  • Rouyer T, Fromenti JM, Ménard F, Cazelles B, Briand K, Pianet R, Planque B, Stenseth NC (2008a) Complex interplays among population dynamics, environmental forcing, and exploitation in fisheries. Proc Natl Acad Sci 105:5420–5425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouyer T, Fromentin J, Stenseth N, Cazelles B (2008b) Analysing multiple time series and extending significance testing in wavelet analysis. Mar Ecol Prog Ser 359:1–23

    Article  Google Scholar 

  • Royall RM (2004) The likelihood paradigm for statistical evidence. In: Taper ML, Lele SR (eds) The nature of scientific evidence: statistical, philosophical and empirical considerations. The University of Chicago Press, Chicago, pp 119–152

    Chapter  Google Scholar 

  • Salvadori G, De Michele C (2007) On the use of copulas in hydrology: theory and practice. J Hydrol Eng 12:369–380

    Article  Google Scholar 

  • Santos MN, Gaspar MB, Vasconcelos P, Monteiro CC (2002) Weight–length relationships for 50 selected fish species of the Algarve coast (southern Portugal). Fish Res 59:289–295

    Article  Google Scholar 

  • Schefzik R, Thorarinsdottir TL, Gneiting T (2013) Uncertainty quantification in complex simulation models using ensemble copula coupling. Stat Sci 28:616–640

    Article  Google Scholar 

  • Schmidt T (2006) Coping with copulas. In: Rank J (ed) Copulas: from theory to application in finance. Risk Books, London, pp 3–34

    Google Scholar 

  • Serinaldi F, Grimaldi S, Abdolhosseini M, Corona P, Cimini D (2012) Testing copula regression against benchmark models for point and interval estimation of tree wood volume in beech stands. Eur J For Res 131:1313–1326

    Article  Google Scholar 

  • Seuront L (2010) Fractals and multifractals in ecology and aquatic science. CRC, Boca Raton

    Google Scholar 

  • Seuront L, Lagadeuc Y (2001) Multiscale patchiness of the calanoid copepod Temora longicornis in a turbulent coastal sea. J Plankton Res 23:1137–1145

    Article  Google Scholar 

  • Seuront L, Spilmont N (2002) Self-organized criticality in intertidal microphytobenthos patch patterns. Phys A 313:513–539

    Article  CAS  Google Scholar 

  • Sheng Y (2010) Wavelet transform. In: Poularikas AD (ed) Transforms and applications handbook. CRC Press, Boca Raton, p 911

    Google Scholar 

  • Shenko AN, Bien WF, Spotila JR, Avery HW (2012) Effects of disturbance on small mammal community structure in the New Jersey Pinelands, USA. Integr Zool 7:16–29

    Article  PubMed  Google Scholar 

  • Shumway RH, Stoffer DS (2011) Time series analysis and its applications with R examples, 3rd edn. Springer, New York, 596 p

    Book  Google Scholar 

  • Sokal RR, Oden NL (1978a) Spatial autocorrelation in biology: 1. Methodology. Biol J Linn Soc 10:199–228

    Article  Google Scholar 

  • Sokal RR, Oden NL (1978b) Spatial autocorrelation in biology: 2. Some biological implications and four applications of evolutionary and ecological interest. Biol J Linn Soc 10:229–249

    Article  Google Scholar 

  • Sousa T, Domingos T, Kooijman SALM (2008) From empirical patterns to theory: a formal metabolic theory of life. Philos Trans R Soc B Biol Sci 363:2453–2464

    Article  Google Scholar 

  • Southwood TRE, Henderson PA (2000) Ecological methods. Wiley-Blackwell, Oxford, 592 p

    Google Scholar 

  • Student (1914) The elimination of spurious correlation due to position in time or space. Biometrika 10:179–180

    Article  Google Scholar 

  • Stumpf MPH, Porter MA (2012) Critical truths about power laws. Science 335:665–666

    Article  CAS  PubMed  Google Scholar 

  • Sutherland WJ (1982) Spatial variation in the predation of cockles by oystercatchers at Traeth Melynog, Anglesey. II. The pattern of mortality. J Anim Ecol 51:491–500

    Article  Google Scholar 

  • Taper ML, Ponciano JM (2016) Evidential statistics as a statistical modern synthesis to support 21st science. Popul Ecol 58:9–29

    Article  Google Scholar 

  • Thrush SF, Pridmore RD, Hewitt JE (1994) Impacts on soft-sediment macrofauna: the effects of spatial variation on temporal trends. Ecol Appl 4:31–41

    Article  Google Scholar 

  • Tjørve E (2009) Shapes and functions of species–area curves (II): a review of new models and parameterizations. J Biogeogr 36:1435–1445

    Article  Google Scholar 

  • Tobler WR (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46:234–240

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical puide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  • Wang M, Upadhyay A, Zhang L (2010) Trivariate distribution modeling of tree diameter, height, and volume. For Sci 56:290–300

    Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  CAS  PubMed  Google Scholar 

  • White CR, Kearney MR, Matthews PG, Kooijman SA, Marshall DJ (2011) A manipulative test of competing theories for metabolic scaling. Am Nat 178:746–754

    Article  PubMed  Google Scholar 

  • Xiao X, White E, Hooten M, Durham S (2011) On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology 92:1887–1894

    Article  PubMed  Google Scholar 

  • Zeileis A, Grothendieck G (2005) Zoo: S3 Infrastructure for regular and irregular time series. J Stat Softw 14:1–27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Beninger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beninger, P.G., Boldina, I. (2018). Quantitative Considerations in Mudflat Ecology. In: Beninger, P. (eds) Mudflat Ecology. Aquatic Ecology Series, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-99194-8_15

Download citation

Publish with us

Policies and ethics