Skip to main content

Spatiotemporal Patterns of Granule Cell Activity Revealed by a Large-Scale, Biologically Realistic Model of the Hippocampal Dentate Gyrus

  • Chapter
  • First Online:
Hippocampal Microcircuits

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

  • 1279 Accesses

Abstract

Interest in the hippocampus has generated vast amounts of experimental data describing hippocampal properties, including anatomical, morphological, biophysical, and synaptic transmission levels of analysis. However, this wealth of structural and functional detail has not guaranteed insight into higher levels of system operation.

In this chapter, we propose a computational framework that can integrate the available, quantitative information at various levels of organization to construct a three-dimensional, large-scale, biologically realistic, spiking neuronal network model with the goal of representing all major neurons and neuron types, and the synaptic connectivity, found in the rat hippocampus. In this approach, detailed neuron models are constructed using a multi-compartment approach.

Simulations were performed to investigate the role of network architecture on the spatiotemporal patterns of activity generated by the dentate gyrus. The results show that the topographical projection of axons between the entorhinal cortex and the dentate granule cells organizes the postsynaptic population into subgroups of neurons that exhibit correlated firing expressed as spatiotemporal clusters of firing. These clusters may represent a potential “intermediate” level of hippocampal function. Furthermore, the effects of inhibitory and excitatory circuits, and their interactions, on the population granule cell response were explored using dentate basket cells and hilar mossy cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acsády L, Kamondi A, Sík A, Freund TF, Buzsáki G (1998) GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 19:3386–3403

    Article  Google Scholar 

  • Acsády L, Katona I, Martínez-Guijarro FJ, Buzsáki G, Freund TF (2000) Unusual target selectivity of perisomatic inhibitory cells in the hilar region of the rat hippocampus. J Neurosci 20:6907–6919

    Article  PubMed  PubMed Central  Google Scholar 

  • Aggleton JP, Brown MW (1999) Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci 22:425–444

    Article  CAS  PubMed  Google Scholar 

  • Andersen P, Bliss TVP, Skrede KK (1971) Lamellar organization of hippocampal excitatory pathways. Exp Brain Res 13:222–238

    CAS  PubMed  Google Scholar 

  • Andersen P, Silfvenius H, Sundberg SH, Sveen O, Wigström H (1978) Functional characteristics of unmyelinated fibres in the hippocampal cortex. Brain Res 144:11–18

    Article  CAS  PubMed  Google Scholar 

  • Aradi I, Holmes WR (1999) Role of multiple calcium and calcium-dependent conductances in regulation of hippocampal dentate granule cell excitability. J Comput Neurosci 6:215–235

    Article  CAS  PubMed  Google Scholar 

  • Aradi I, Soltesz I (2002) Modulation of network behaviour by changes in variance in interneuronal properties. J Phys 539:227–251

    Google Scholar 

  • Ascoli GA, Krichmar JL (2000) L-neuron: a modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing 32-33:1003–1011

    Article  Google Scholar 

  • Ascoli GA, Donohue DE, Halavi M (2007) NeuroMorpho.Org: a central resource for neuronal morphologies. J Neurosci 27:9247–9251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger TW, Bassett JL (1992) System properties of the hippocampus. In: Gormezano I, Wasserman EA (eds) Learning and memory: the biological substrates. Lawrence Erlbaum, Hillsdale, pp 275–320

    Google Scholar 

  • Berger TW, Weisz DJ (1987) Single unit analysis of hippocampal pyramidal and granule cells during classic conditioning of the rabbit nictitating membrane response. In: Gormezano I, Prokasy WF, Thompson RF (eds) Classical conditioning III: behavioral, neurophysiological and neurochemical studies in the rabbit. Lawrence Erlbaum, Hillsdale, pp 217–253

    Google Scholar 

  • Berger TW, Semple-Rowland S, Bassett JL (1981) Hippocampal polymorph neurons are the cells of origin for ipsilateral association and commissural afferents to the dentate gyrus. Brain Res 215:329–336

    Article  CAS  PubMed  Google Scholar 

  • Berger TW, Rinaldi P, Weisz DJ, Thompson RF (1983) Single unit analysis of different hippocampal cell types during classical conditioning of the rabbit nictitating membrane response. J Neurophysiol 50:1197–1219

    Article  CAS  PubMed  Google Scholar 

  • Berger TW, Berry SD, Thompson RF (1986) Role of the hippocampus in classical conditioning of aversive and appetitive behaviors. In: Isaacson RL, Pribram KH (eds) The hippocampus, vol 4. Plenum, New York, pp 203–239

    Chapter  Google Scholar 

  • Berger TW, Hampson RE, Song D, Goonawardena A, Marmarelis VZ, Deadwyler SA (2011) A cortical neural prosthesis for restoring and enhancing memory. J Neural Eng 8:046017. https://doi.org/10.1088/1741-2560/8/4/046017

    Article  PubMed  PubMed Central  Google Scholar 

  • Buckmaster PS, Dudek FE (1997) Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats. J Comp Neurol 385:385–404

    Article  CAS  PubMed  Google Scholar 

  • Buckmaster PS, Dudek FE (1999) In vivo intracellular analysis of granule cell axon reorganization in epileptic rats. J Neurophysiol 81:712–721

    Article  CAS  PubMed  Google Scholar 

  • Buckmaster PS, Jongen-Rêlo AL (1999) Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainite-induced epileptic rats. J Neurosci 19:9519–9529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckmaster PS, Strowbridge BW, Kunkel DD, Schmiege DL, Schwartzkroin PA (1992) Mossy cell axonal projections to the dentate gyrus molecular layer in the rat hippocampal slice. Hippocampus 2:349–362

    Article  CAS  PubMed  Google Scholar 

  • Buckmaster PS, Wenzel HJ, Kunkel DD, Schwartzkroin PA (1996) Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. J Comp Neurol 366:271–292

    Article  CAS  PubMed  Google Scholar 

  • Buhl EH, Halasy K, Somogyi P (1994) Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368:823–828

    Article  CAS  PubMed  Google Scholar 

  • Buhl EH, Cobb SR, Halasy K, Somogyi P (1995) Properties of unitary IPSPs evoked by anatomically identified basket cells in the rat hippocampus. Eur J Neurosci 7:1989–2004

    Article  CAS  PubMed  Google Scholar 

  • Cajal SR (1968) The structure of the Ammon’s horn. Charles C. Thomas, Springfield

    Google Scholar 

  • Carnevale NT, Hines ML (2006) The NEURON book. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Claiborne BJ, Amaral DG, Cowan WM (1990) Quantitative, three-dimensional analysis of granule cell dendrites in the rat dentate gyrus. J Comp Neurol 302:206–219

    Article  CAS  PubMed  Google Scholar 

  • Cohen NJ, Eichenbaum H (1993) Memory, amnesia and the hippocampal system. MIT Press, Cambridge

    Google Scholar 

  • Crain B, Cotman C, Taylor D, Lynch G (1973) A quantitative electron microscopic study of synaptogenesis in the dentate gyrus of the rat. Brain Res 63:195–204

    Article  CAS  PubMed  Google Scholar 

  • De Schutter E, Bower JM (1994) An active membrane model of the cerebellar Purkinje cell I. Simulation of current clamps in slice. J Neurophysiol 71:375–400

    Article  PubMed  Google Scholar 

  • Desmond NL, Levy WB (1985) Granule cell dendritic spine density in the rat hippocampus varies with spine shape and location. Neurosci Lett 54:219–224

    Article  CAS  PubMed  Google Scholar 

  • Dolorfo CL, Amaral DG (1998) Entorhinal cortex of the rat: topographic organization of the cells of origin of the perforant path projection to the dentate gyrus. J Comp Neurol 398:25–48

    Article  CAS  PubMed  Google Scholar 

  • Douglas RM, McNaughton BL, Goddard GV (1983) Commissural inhibition and facilitation of granule cell discharge in fascia dentata. J Comp Neurol 219:285–294

    Article  CAS  PubMed  Google Scholar 

  • Dyhrfjeld-Johnsen J, Santhakumar V, Morgan RJ, Huerta R, Tsimring L, Soltesz I (2007) Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J Neurophysol 97:1566–1587

    Article  Google Scholar 

  • Eichenbaum H, Wiener SI, Shapiro ML, Cohen NJ (1989) The organization of spatial coding in the hippocampus: a study of neural ensemble activity. J Neurosci 9:2764–2775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster TC, Barnes CA, Rao G, McNaughton BL (1991) Increase in perforant path quantal size in aged F-344 rats. Neurobiol Aging 12:441–448

    Article  CAS  PubMed  Google Scholar 

  • Freund TF, Buzsáki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    Article  CAS  PubMed  Google Scholar 

  • Gaarskjaer FB (1978) Organization of the mossy fiber system of the rat studied in extended hippocampi I: terminal area related to number of granule and pyramidal cells. J Comp Neurol 178:49–71

    Article  CAS  PubMed  Google Scholar 

  • Gamrani H, Onteniente B, Seguela P, Geffard M, Calas A (1986) Gamma-aminobutyric acid-immunoreactivity in the rat hippocampus: a light and electron microscopic study with anti-GABA antibodies. Brain Res 364:30–38

    Article  CAS  PubMed  Google Scholar 

  • Geiger JRP, Lübke J, Roth A, Frotscher M, Jonas P (1997) Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron 18:1009–1023

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb DI, Cowan WM (1973) Autoradiographic studies of the commissural and ipsilateral association connection of the hippocampus and dentate gyrus of the rat. I. The commissural connections. J Comp Neurol 149:393–421

    Article  CAS  PubMed  Google Scholar 

  • Gulyás AI, Megías M, Emri Z, Freund TF (1999) Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J Neurosci 19:10082–10097

    Article  PubMed  PubMed Central  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser M-B, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806. https://doi.org/10.1038/nature03721

    Article  CAS  PubMed  Google Scholar 

  • Halasy K, Somogyi P (1993) Distribution of GABAergic synapses and their targets in the dentate gyrus of rat: a quantitative immunoelectron microscopic analysis. J Hirnforsch 34:299–308

    CAS  PubMed  Google Scholar 

  • Hama K, Arii T, Kosaka T (1989) Three-dimensional morphometrical study of dendritic spines of the granule cell in the rat dentate gyrus with HVEM stereo images. J Electron Microsc Tech 12:80–87

    Article  CAS  PubMed  Google Scholar 

  • Hampson RE, Simeral JD, Deadwyler SA (1999) Distribution of spatial and nonspatial information in dorsal hippocampus. Nature 402:610–614

    Article  CAS  PubMed  Google Scholar 

  • Han ZS, Buhl EH, Lörinczi Z, Somogyi P (1993) A high degree of spatial selectivity in the axonal and dendritic domains of physiologically identified local-circuit neurons in the dentate gyrus of the rat hippocampus. Eur J Neurosci 5:395–410

    Article  CAS  PubMed  Google Scholar 

  • Hasselmo ME (2005) What is the function of hippocampal theta rhythm?—linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus 15:936–949. https://doi.org/10.1002/hipo.20116

    Article  PubMed  Google Scholar 

  • Hendrickson PJ, Yu GJ, Song D, Berger TW (2015) Interactions between inhibitory interneurons and excitatory associational circuitry in determining spatio-temporal dynamics of hippocampal dentate granule cells: a large-scale computational study. Front Syst Neurosci 9. https://doi.org/10.3389/fnsys.2015.00155

  • Hendrickson PJ, Yu GJ, Song D, Berger TW (2016) A million-plus neuron model of the hippocampal dentate gyrus: critical role for topography in determining spatiotemporal network dynamics. IEEE Trans Biomed Eng 63:199–209

    Article  PubMed  Google Scholar 

  • Hines ML, Davison AP, Muller E (2009) NEURON and Python. Front Neuroinform 28. https://doi.org/10.3389/neuro.11.001.2009

  • Hinneburg A, Gabriel H (2007) DENCLUE 2.0: fast clustering based on kernel density estimation. In Proceedings of the 7th international conference on advances in intelligent data analysis, Ljubljana, vol. 4723, pp 70–80

    Google Scholar 

  • Hjorth-Simonsen A, Jeune B (1972) Origin and termination of the hippocampal perforant path in the rat studied by silver impregnation. J Comp Neurol 144:215–232

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka N, Weber J, Amaral DG (1990) Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J Comp Neurol. 295:580–623

    Article  CAS  PubMed  Google Scholar 

  • Jaffe DB, Ross WN, Lisman JE, Lasser-Ross N, Miyakawa H, Johnston D (1994) A model for dendritic Ca2+ accumulation in hippocampal pyramidal neurons based on fluorescence imaging measurements. J Neurosci 71:1065–1077

    CAS  Google Scholar 

  • Krueppel R, Remy S, Beck H (2011) Dendritic integration in hippocampal dentate granule cells. Neuron 71:512–528

    Article  CAS  PubMed  Google Scholar 

  • Krupic J, Burgess N, O’Keefe J (2012) Neural representations of location composed of spatially periodic bands. Science 337:853–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy WB (1989) A computational approach to hippocampal function. In: Psychology of learning and motivation. Elsevier, pp 243–305

    Google Scholar 

  • Lorente de Nó R (1934) Studies on the structure of the cerebral cortex II: continuation of the study of the ammonic system. J Psychol Neurol 46:113–177

    Google Scholar 

  • MacKenzie S, Frank AJ, Kinsky NR, Porter B, Riviére PD, Eichenbaum H (2014) Hippocampal representation of related and opposing memories develop within distinct, hierarchically organized neural schemas. Neuron 83:202–215

    Article  CAS  Google Scholar 

  • McClelland JL, McNaughton BL, O’Reilly RC (1995) Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102:419–457. https://doi.org/10.1037/0033-295x.102.3.419

    Article  PubMed  Google Scholar 

  • McNaughton BL, Morris RGM (1987) Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci 10:408–415. https://doi.org/10.1016/0166-2236(87)90011-7

    Article  Google Scholar 

  • Marr D (1971) Simple memory: a theory for archicortex. Philos Trans R Soc Lond 262:23–81

    Article  CAS  Google Scholar 

  • Morgan RJ, Soltesz I (2010) Microcircuit model of the dentate gyrus in epilepsy. In: Cutsuridis V, Graham BP, Cobb S, Vida I (eds) Hippocampal microcircuits. Springer, New York, pp 495–525

    Chapter  Google Scholar 

  • Mulders WHAM, West MJ, Slomianka L (1997) Neuron numbers in the presubiculum, parasubiculum, and entorhinal area of the rat. J Comp Neurol 385:83–94

    Article  CAS  PubMed  Google Scholar 

  • Myers CE, Scharfman HE (2011) Pattern separation in the dentate gyrus: a role for the CA3 backprojection. Hippocampus 21:1190–1215

    Article  PubMed  Google Scholar 

  • Nadel L, Moscovitch M (1997) Memory consolidation, retrograde amnesia and the hippocampal complex. Curr Opin Neurobiol 7:217–227

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe J, Nadel L (1978) The Hippocampus as a cognitive map. Oxford University Press, London

    Google Scholar 

  • Oliphant TE (2007) Python for scientific computing. Comput Sci Eng 9:10–20

    Article  CAS  Google Scholar 

  • Patton PE, McNaughton BL (1995) Connection matrix of the hippocampal formation: I. The dentate gyrus. Hippocampus 5:245–286

    Article  CAS  PubMed  Google Scholar 

  • Ribak CE, Seress L (1983) Five types of basket cell in the hippocampal dentate gyrus: a combined Golgi and electron microscopic study. J Neurocytol 12:577–597

    Article  CAS  PubMed  Google Scholar 

  • Ribak CE, Shapiro LA (2007) Ultrastructure and synaptic connectivity of cell types in the adult rat dentate gyrus. Prog Brain Res 163:155–166

    Article  PubMed  Google Scholar 

  • Ribak CE, Nitsch R, Seress L (1990) Proportion of parvalbumin-positive basket cells in the GABAergic innervation of pyramidal and granule cells of the rat hippocampal formation. J Comp Neurol 300:449–461

    Article  CAS  PubMed  Google Scholar 

  • Rihn LL, Claiborne BJ (1990) Dendritic growth and regression in rat dentate granule cells during late postnatal development. Dev Brain Res 54:115–124

    Article  CAS  Google Scholar 

  • Santhakumar V, Bender R, Frotscher M, Ross ST, Hollrigel GS, Toth Z, Soltesz I (2000) Granule cell hyperexcitability in the early post-traumatic rat dentate gyrus: the ‘irritable mossy cell’ hypothesis. J Physiol 524(Pt 1):117–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93:437–453

    Article  PubMed  Google Scholar 

  • Scharfman HE (1995) Electrophysiological evidence that dentate hilar mossy cells are excitatory and innervate both granule cells and interneurons. J Neurophysiol 74:179–194

    Article  CAS  PubMed  Google Scholar 

  • Scharfman HE, Kunkel DD, Schwartkroin PA (1990) Synaptic connections of dentate granule cells and hilar neurons: results of paired intracellular recordings and intracellular horseradish peroxidase injections. Neuroscience 37:693–707

    Article  CAS  PubMed  Google Scholar 

  • Scorcioni R, Polavaram S, Ascoli GA (2008) L-measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nat Protoc 3:866–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seress L, Pokorny J (1978) Structure of the granular layer of the rat dentate gyrus. A light microscopic and Golgi study. J Anat 133:181–195

    Google Scholar 

  • Seress L, Pokorny J (1981) Structure of the granular layer of the rat dentate gyrus: a light microscopic and Golgi study. J Anat 133:181–195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seress L, Ribak CE (1983) GABAergic cells in the dentate gyrus appear to be local circuit and projection neurons. Exp Brain Res 50:173–182

    CAS  PubMed  Google Scholar 

  • Sík A, Penttonen M, Buzsáki G (1997) Interneurons in the hippocampal dentate gyrus: an in vivo intracellular study. Eur J Neurosci 9:573–588

    Article  PubMed  Google Scholar 

  • Sloviter RS, Zappone CA, Harvey BD, Bumanglag AV, Bender RA, Frotscher M (2003) ‘Dormant basket cell’ hypothesis revisited: relative vulnerabilities of dentate gyrus mossy cells and inhibitory interneurons after hippocampal status epilepticus in the rat. J Comp Neurol 459:44–76

    Article  CAS  PubMed  Google Scholar 

  • Solstad T, Moser EI, Einevoll GT (2006) From grid cells to place cells: a mathematical model. Hippocampus 16:1026–1031. https://doi.org/10.1002/hipo.20244

    Article  PubMed  Google Scholar 

  • Soriano E, Frotscher M (1989) A GABAergic axo-axonic cell in the fascia dentata controls the main excitatory hippocampal pathway. Brain Res 503:170–174

    Article  CAS  PubMed  Google Scholar 

  • Soriano E, Frotscher M (1994) Mossy cells of the rat fascia dentate are glutamate-immunoreactive. Hippocampus 4:65–69

    Article  CAS  PubMed  Google Scholar 

  • Spruston N, Johnston D (1992) Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. J Neurophysiol 67:508–529. https://doi.org/10.1152/jn.1992.67.3.508

    Article  CAS  PubMed  Google Scholar 

  • Squire LR (1986) Mechanisms of memory. Science 232:1612–1619

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Wyss JM, Cowan WM (1978) An autoradiographic study of the organization of intrahippocampal association pathways in the rat. J Comp Neurol 181:681–716

    Article  CAS  PubMed  Google Scholar 

  • Tamamaki N, Nojyo Y (1993) Projection of the entorhinal layer II neurons in the rat as revealed by intracellular pressure-injection of neurobiotin. Hippocampus 3:471–480

    Article  CAS  PubMed  Google Scholar 

  • Treves A, Rolls ET (1994) Computational analysis of the role of the hippocampus in memory. Hippocampus 4:374–391

    Article  CAS  PubMed  Google Scholar 

  • Vida I (2010) Morphology of hippocampal neurons. In: Cutsuridis V, Graham BP, Cobb S, Vida I (eds) Hippocampal microcircuits. Springer, New York, pp 27–67

    Chapter  Google Scholar 

  • Warman EN, Durand DM, Yuen GLF (1994) Reconstruction of hippocampal CA1 pyramidal cell electrophysiology by computer simulation. J Neurosci 71:2033–2045

    CAS  Google Scholar 

  • Wenzel HJ, Buckmaster PS, Anderson NL, Wenzel ME, Schwartzkroin PA (1997) Ultrastructural localization of neurotransmitter immunoreactivity in mossy cell axons and their synaptic targets in the rat dentate gyrus. Hippocampus 7:559–570

    Article  CAS  PubMed  Google Scholar 

  • Witter MP (2007) The perforant path: projections from the entorhinal cortex to the dentate gyrus. Prog Brain Res 163:43–61

    Article  PubMed  Google Scholar 

  • Yeckel MF, Berger TW (1990) Feedforward excitation of the hippocampus by entorhinal afferents: redefinition of the role of the trisynaptic pathway. Proc Natl Acad Sci USA 87:5832–5836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeckel MF, Berger TW (1995) Monosynaptic excitation of CA1 hippocampal pyramidal neurons by afferents from the entorhinal cortex. Hippocampus 5:108–114

    Article  CAS  PubMed  Google Scholar 

  • Yu GJ, Song D, Berger TW (2014) Implementation of the excitatory entorhinal-dentate-CA3 topography in a large-scale computational model of the rat hippocampus. In: EMBC, 2014: 36th annual international conference of the IEEE Engineering in Medicine and Biology Society, Chicago. IEEE, pp 6581–6584

    Google Scholar 

  • Yu GJ, Hendrickson PJ, Song D, Berger TW (2015) Topography-dependent spatio-temporal correlations in the entorhinal-dentate-CA3 circuit in a large-scale computational model of the rat hippocampus. In: EMBC, 2015: 37th annual international conference of the IEEE Engineering in Medicine and Biology Society, Milan. IEEE, pp 3965–3968

    Google Scholar 

  • Yu GJ, Song D, Berger TW (2016). Place field detection using grid-based clustering in a large-scale computational model of the rat dentate gyrus. In: EMBC, 2016: 38th annual international conference of the IEEE Engineering in Medicine and Biology Society, Orlando. IEEE, pp 1405–1408

    Google Scholar 

  • Yuen GLF, Durand DM (1991) Reconstruction of hippocampal granule cell electrophysiology by computer simulation. Neuroscience 41:411–423

    Article  CAS  PubMed  Google Scholar 

  • Zimmer J (1971) Ipsilateral afferents to the commissural zone of the fascia dentata, demonstrated in decommissurated rats by silver impregnation. J Comp Neurol 142:393–416

    Article  CAS  PubMed  Google Scholar 

  • Zipp F, Nitsch R, Soriano E, Frotscher M (1989) Entorhinal fibers form synaptic contacts on parvalbumin-immunoreactive neurons in the rat fascia dentata. Brain Res 495:161–166

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by ONR Grant N00014-13-1-0211, NIBIB Grant P41 EB001978, and NIH Grant U01 GM104604. Computation for the work was supported by the University of Southern California Center for High-Performance Computing and Communications (www.usc.ed/hpcc).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gene J. Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, G.J., Hendrickson, P.J., Song, D., Berger, T.W. (2018). Spatiotemporal Patterns of Granule Cell Activity Revealed by a Large-Scale, Biologically Realistic Model of the Hippocampal Dentate Gyrus. In: Cutsuridis, V., Graham, B., Cobb, S., Vida, I. (eds) Hippocampal Microcircuits. Springer Series in Computational Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-99103-0_12

Download citation

Publish with us

Policies and ethics