Skip to main content

Halophilic Microbial Ecology for Agricultural Production in Salt Affected Lands

  • Chapter
  • First Online:
  • 952 Accesses

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 33))

Abstract

Halophiles microbes are present in hypersaline environments. Several alkaliphilic Bacillus species isolated from soils show halophilic characteristics. Genera that include halophilic species isolated from soil samples are Halobacillus, Filobacillus, Tenuibacillus, Lentibacillus, and Thalassobacillus. Species from Filobacillus, Thalassobacillus, Lentibacillus and Tenuibacillus genera are moderately halophile. The family Nocardiopsaceae predominate in saline or alkaline soils. Many Gram-negative, moderately halophilic, or halotolerant species are included in the family Halomonadaceae. Microorganisms from the genus Streptomonospora, which are Gram-positive, aerobic organisms with branching hyphae, are found to grow upto 15% NaCl.

Mycorrhizal fungi can increase the growth of plants growing in salinity. Vesicular arbuscular mycorrhizal fungi have the ability to protect plants from salt stress. Compatible solute strategy is employed by the majority of moderately halophilic and halotolerant bacteria. All halophilic microorganisms contain potent transport mechanisms, generally based on Na+/H+ antiporters, to expel sodium ions from the interior of the cell. Also, some halophiles express aminocyclopropane-1-carboxylic acid (ACC) deaminase activity that removes stress, ethylene from the rhizosphere and some produce auxins that promote root growth. Plant growth-promoting rhizobacteria induces plants salt stress tolerance. Inoculation of halophilic plant growth-promoting bacterial strains reduces sodium by 19% in soil. Also, with such method, the yield of wheat and Zea mays can be increased by 10–12% under salinity stress. Liquid bioformulations of efficient halophilic plant growth promoters improvs crop yields under salt stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aliasgharzadeh N, Saleh Rastin N, Towfighi H, Alizadeh A (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11:119–122

    Article  CAS  PubMed  Google Scholar 

  • Al-Tai AM, Ruan JS (1994) Nocardiopsis halophila sp. nov., a new halophilic actinomycete isolated from soil. Int J Syst Bacteriol 44:474–478

    Article  Google Scholar 

  • Al-Zarban SS, Abbas I, Al-Musallam AA, Steiner U, Stackebrandt E, Kroppenstedt RM (2002) Nocardiopsis halotolerans sp. nov., isolated from salt marsh soil in Kuwait. Int J Syst Evol Microbiol 52:525–529

    Article  CAS  PubMed  Google Scholar 

  • Amoozegar MA, Malekzadeh F, Malik KA, Schumann P, Sproer C (2003) Halobacillus karajensis sp. nov., a novel moderate halophile. Int J Syst Evol Microbiol 53:059–1063

    Article  CAS  Google Scholar 

  • Arahal DR, Ventosa A (2002) Moderately halophilic and halotolerant species of Bacillus and related genera. In: Berkeley R, Heyndrickx M, Logan N, De Vos P (eds) Applications and systematics of Bacillus and relatives. Blackwell, Oxford, pp 83–99

    Chapter  Google Scholar 

  • Arahal DR, Ventosa A (2005) The family Halomonadaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: an evolving electronic resource for the microbial community, release 3.20. Springer, New York http://141.150.157.117:8080/prokPUB/index.htm

    Google Scholar 

  • Arahal DR, Castillo AM, Ludwig W, Schleifer KH, Ventosa A (2002) Proposal of Cobetia marina gen. nov., comb. nov., within the family Halomonadaceae, to include the species Halomonas marina. Syst Appl Microbiol 25:207–211

    Article  PubMed  Google Scholar 

  • Arora NK, Khare E, Maheshwari DK (2010) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, vol 18. Springer, Berlin/Heidelberg, pp 97–116

    Chapter  Google Scholar 

  • Arora SV (2017) Reclamation and management of salt affected soils for safeguarding agricultural productivity. Journal of Safe Agriculture 01(1):1–10

    Google Scholar 

  • Arora S, Singh YP, Vanza M, Sahni D (2016) Bioremediation of saline and sodic soils through halophilic bacteria to enhance agricultural production. J Soil Water Conserv, India 15(4):302–305

    Article  Google Scholar 

  • Arora S, Singh YP (2018) Bioremediation of salt affected soils of Uttar Pradesh through halophilic microbes to promote organic farming. In: Sharma PC, Singh A (eds) Annual report, 2017–18. ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India, pp 112–118

    Google Scholar 

  • Arora S, Trivedi R, Rao GG (2012) Bioremediation of coastal and inland salt affected soils using halophilic soil microbes. Salinity News 18(2):3

    Google Scholar 

  • Arora Sanjay, Trivedi R, Rao GG (2013) Bioremediation of coastal and inland salt affected soils using halophyte plants and halophilic soil microbes. CSSRI annual report 2012–13, CSSRI, Karnal, India, pp 94–100

    Google Scholar 

  • Arora S, Patel P, Vanza M, Rao GG (2014a) Isolation and characterization of endophytic bacteria colonizing halophyte and other salt tolerant plant species from coastal Gujarat. Afr J Microbiol Res 8(17):1779–1788

    Article  Google Scholar 

  • Arora S, Vanza M, Mehta R, Bhuva C, Patel P (2014b) Halophilic microbes for bio-remediation of salt affected soils. Afr J Microbiol Res 8(33):3070–3078

    Article  CAS  Google Scholar 

  • Arora S, Vanza M (2017) Microbial approach for bioremediation of saline and sodic soils. In: Sanjay A, Singh AK, Singh YP (eds) Bioremediation of salt affected soils: an Indian perspective. Springer, Switzerland, pp 87–100

    Chapter  Google Scholar 

  • Ash C, Farrow JAE, Wallbanks S, Collins MD (1991) Phylogenetic heterogeneity of genus Bacillus as revealed by comparative analysis of small-subunit-ribosomal RNA sequence. Lett Appl Microbiol 13:202–206

    Article  CAS  Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2006) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic 109(1):8–14

    Article  CAS  Google Scholar 

  • Bhuva C, Arora S, Rao GG (2013) Efficacy of halophilic microbes for salt removal from coastal saline soils. In: National seminar with the theme “Microbes and Human Welfare”, Bharathidasan University, Tiruchirappalli, India

    Google Scholar 

  • Bouchotroch S, Quesada E, del Moral A, Llamas I, Bejar V (2001) Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51:1625–1632

    Article  CAS  PubMed  Google Scholar 

  • Brocq-Rousseau D (1904) Sur un Streptothrix. Ref Gen Botanique 16:20–26

    Google Scholar 

  • Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty U, Roy S, Chakraborty AP, Dey P, Chakraborty B (2011) Plant growth promotion and amelioration of salinity stress in crop plants by a salt-tolerant bacterium. Recent Res Sci Technol 3(11):61–70

    CAS  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane- 1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918

    Article  CAS  PubMed  Google Scholar 

  • Chun J, Bae KS, Moon EY, Jung SO, Lee HK, Kim SJ (2000) Nocardiopsis kunsanensis sp. nov., a moderately halophilic actinomycete isolated from a saltern. Int J Syst Evol Microbiol 50:1909–1913

    Article  CAS  PubMed  Google Scholar 

  • Collins MD, Lawson PA, Labrenz M, Tindall BJ, Weiss N, Hirsch P (2002) Nesterenkonia lacusekhoensis sp. Nov., isolated from hypersaline Ekho Lake, east Antarctica and emended description of the genus Nesterenkonia. Int J Syst Evol Microbiol 52:1145–1150

    CAS  PubMed  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (1997) Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiol Biochem 35:939–944

    CAS  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (1998) Water relations in Azospirillum inoculated wheat seedlings under osmotic stress. Can J Bot 76:238–244

    Google Scholar 

  • Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP, Xu LH, Jiang CL (2001) Streptimonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 51:357–363

    Article  CAS  PubMed  Google Scholar 

  • Das S, Lyla PS, Khan SA (2006) Marine microbial diversity and ecology: present status and future perspectives. Curr Sci 90(10):1325–1335

    CAS  Google Scholar 

  • Dash HR, Das S (2012) Bioremediation of mercury and importance of bacterial mer genes. Int Biodeterior Biodegrad 75:207–213

    Article  CAS  Google Scholar 

  • DasSarma S, Arora P (2001) Halophiles. Enc Life Sci. https://doi.org/10.1038/npg.els.0004356

  • de Rutger W, Bouvier T (2006) Environmental. Microbiology 8(4):755–758. https://doi.org/10.1111/j.1462-2920.2006.01017.x

    Article  Google Scholar 

  • Dobson SJ, Franzmann PD (1996) Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980) and Halovibrio (Fendrich, 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons, 1952) into a single genus, Halomonas and placement of the genus Zymobacter in the family Halomonadaceae. Int J Syst Bacteriol 46:550–558

    Article  CAS  Google Scholar 

  • Dodd IC, Perez-Alfocea F (2012) Microbial alleviation of crop salinity. J Exp Bot 63:3415–3428

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Muller KM, Charles TC, Vesely S, Glick BR (2009) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from Southern Saskatchewan. Microb Ecol 57:423–436

    Article  CAS  PubMed  Google Scholar 

  • Dundas I (1998) Was the environment for primordial life hypersaline? Extremophiles 2:375–377

    Article  CAS  PubMed  Google Scholar 

  • Echigo A, Hino M, Fukushima T, Mizuki T, Kamekura M, Usami R (2005) Endospores of halophilic bacteria of the family Bacillaceae isolated from non-saline Japanese soil may be transported by Kosa event (Asian dust storm). Saline Syst 1:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritze D (1996) Bacillus haloalkaliphilus sp. nov. Int J Syst Bacteriol 46:98–101

    Article  Google Scholar 

  • Garabito MJ, Arahal DR, Mellado E, Marquez MC, Ventosa A (1997) Bacillus salexigens sp. nov., a new moderately halophilic Bacillus species. Int J Syst Bacteriol 47:735–741

    Article  CAS  PubMed  Google Scholar 

  • Garabito MJ, Marquez MC, Ventosa A (1998) Halotolerant Bacillus diversity in hypersaline environments. Can J Microbiol 44:95–102

    Article  CAS  Google Scholar 

  • Garcia MT, Mellado E, Ostos JC, Ventosa A (2004) Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 54:1723–1728

    Article  CAS  PubMed  Google Scholar 

  • García MT, Gallego V, Ventosa A, Mellado E (2005) Thalassobacillus devorans gen. nov., sp. nov., a moderately halophilic, phenol-degrading, Gram-positive bacterium. Int J Syst Evol Microbiol 55:1789–1795

    Article  CAS  PubMed  Google Scholar 

  • Garriga M, Ehrmann MA, Arnau J, Hugas M, Vogel RF (1998) Carnimonas nigrificans gen. nov., sp. nov., a bacterial causative agent for black spot formation on cured meat products. Int J Syst Bacteriol 48:677–686

    Article  CAS  PubMed  Google Scholar 

  • Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon- degrading marine bacterium. Int J Syst Bacteriol 42:568–576

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Penterman JN, Little RD, Chavez R, Glick BR (2003) Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol Biochem 41:277–281

    Article  CAS  Google Scholar 

  • Gorshkova NM, Ivanova EP, Sergeev AF, Zhukova NV, Alexeeva Y, Wrighy JP, Nicolau DV, Mikhailov VV, Christen R (2003) Marinobacter excellens sp. nov., isolated from sediments of the Sea of Japan. Int J Syst Evol Microbiol 53:2073–2078

    Article  CAS  PubMed  Google Scholar 

  • Govindasamy V, Senthilkumar M, Gaikwad K, Annapurna K (2008) Isolation and characterization of ACC deaminase gene from two plant growth-promoting rhizobacteria. Curr Microbiol 57(4):312–317

    Article  CAS  PubMed  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC-deaminase containing plant growth promoting bacteria. Plant Physiol Biochem 39:11–17

    Article  CAS  Google Scholar 

  • Hao MV, Kocur M, Komagata K (1984) Marinococcus gen. nov., a new genus for motile cocci with meso-diaminopimelic acid in the cell wall; and Marinococcus albus sp. nov. and Marinococcus halophilus (Novitsky and Kushner) comb. nov. J Gen Appl Microbiol 30:449–459

    Article  Google Scholar 

  • Heijnen CE, Hok-A-Hin CH, van Veen JA (1992) Improvements to the use of bentonite clay as a protective agent, increasing survival levels of bacteria introduced into soil. Soil Biol Biochem 24:533–538

    Article  Google Scholar 

  • Heyndrickx M, Lebbe L, Kersters K, De Vos P, Forsyth C, Logan NA (1998) Virgibacillus: A new genus to accommodate Bacillus pantothenticus (Proom and Knight 1950). Emended description of Virgibacillus pantothenticus. Int J Syst Bacteriol 48:99–106

    Article  Google Scholar 

  • Heyrman J, Logan NA, Busse HJ, Balcaen A, Lebbe L, Rodriguez-Diaz M, Swings J, De Vos P (2003) Virgibacillus carmonensis sp. nov., Virgibacillus necropolis sp. nov. and Virgibacillus picturae sp. nov., three novel species isolated from deteriorated mural paintings, transfer of the species of the genus Salibacillus to Virgibacillus, as Virgibacillus marismortui comb. nov. and Virgibacillus salexigens comb.nov., and emended description of the genus Virgibacillus. Int J Syst Evol Microbiol 53:501–511

    Article  CAS  PubMed  Google Scholar 

  • Hirrel MC, Gerdemann JW (1980) Improved growth of onion and bell pepper in saline soils by two vesicular-arbuscular mycorrhizal fungi. Soil Sci Soc Am J 44:654–665

    Article  CAS  Google Scholar 

  • Jamal Y, Shafi M, Bakht J, Arif M (2011) Seed priming improves salinity tolerance of wheat varieties. Pak J Bot 43(6):2683–2686

    CAS  Google Scholar 

  • Jeon CO, Lim JM, Lee JC, Lee GS, Lee JM, Xu LH, Jiang CL, Kim CJ (2005a) Lentibacillus salarius sp. nov., isolated from saline sediment in China, and emended description of the genus Lentibacillus. Int J Syst Evol Microbiol 55:1339–1343

    Article  CAS  PubMed  Google Scholar 

  • Jeon CO, Lim JM, Lee JM, Xu LH, Jiang CL, Kim CJ (2005b) Reclassification of Bacillus haloalkaliphilus Fritze 1996 as Alkalibacillus haloalkaliphilus gen. nov., comb. nov. and the description of Alkalibacillus salilacus sp. nov., a novel halophilic bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 55:1891–1896

    Article  CAS  PubMed  Google Scholar 

  • Juniper S, Abbott L (1993) Vesicular and arbuscular mycorrhizae and soil salinity. Mycorrhiza 4:45–57

    Article  Google Scholar 

  • Khan AG (1974) The occurrence of mycorrhizae in halophytes, hydrophytes and xerophytes, and of endogone spores in adjacent soils. J Gen Microbiol 81:7–14

    Article  Google Scholar 

  • Khan AG, Belik M (1994) Occurrence and ecological significance of mycorrhizal symbiosis in aquatic plants. In: Varma A, Hock B (eds) Mycorrhiza: function, molecular biology and biotechnology. Springer, Heidelberg

    Google Scholar 

  • Kim BY, Weon HY, Yoo SH, Kim JS, Kwon SW, Stackebrandt E, Go SJ (2006) Marinobacter koreensis sp. nov., isolated from sea sand in Korea. Int J Syst Evol Microbiol 56:2653–2656

    Article  CAS  PubMed  Google Scholar 

  • Kushner DJ (1993) Growth and nutrition of halophilic bacteria. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC Press, Boca Raton, pp 87–89

    Google Scholar 

  • Landwehr M, Hilderbrandt U, Wilde P, Nawrath K, Toth T, Biro B, Bothe H (2002) The arbuscular mycorrhizal fungus Glomus geosporum in Europaen saline, sodic and gypsum soils. Mycorrhiza 12:199–211

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Lim JM, Lee KC, Lee JC, Park YH, Kim CJ (2006) Virgibacillus koreensis sp. nov., a novel bacterium from salt field, and transfer of Virgibacillus picturae to the genus Oceanobacillus as Oceanobacillus picturae comb. nov. with emended descriptions. Int J Syst Evol Microbiol 56:251–257

    Article  CAS  PubMed  Google Scholar 

  • Li MG, Li WJ, Xu P, Cui XL, Xu LH, Jiang CL (2003a) Nocardiopsis xinjiangensis sp. nov., a halophilic actinomycete isolated from a saline soil sample in China. Int J Syst Evol Microbiol 53:317–321

    Article  CAS  PubMed  Google Scholar 

  • Li WJ, Tang SK, Stackebrandt E, Kroppenstedt RM, Schumann P, Xu LH, Jiang CL (2003b) Saccharomonospora paurometabolica sp. nov., a moderately halophilic actinomycete isolated from soil in China. Int J Syst Evol Microbiol 53:1591–1594

    Article  CAS  PubMed  Google Scholar 

  • Li WJ, Park DJ, Tang SK, Wang D, Li JC, Lee JC, Xu LH, Kim CJ, Jiang CL (2004) Nocardiopsis salina sp. nov., a novel halophilic actinomycete isolated from saline soil in China. Int J Syst Evol Microbiol 54:1805–1809

    Article  CAS  PubMed  Google Scholar 

  • Li WJ, Schumann P, Zhang YQ, Chen GZ, Tian XP, Xu LH, Stackebrandt E, Jiang CL (2005a) Marinococcus halotolerans sp. nov., isolated from Qinghai, north-west China. Int J Syst Evol Microbiol 55:1801–1804

    Article  CAS  PubMed  Google Scholar 

  • Li WJ, Chen HH, Kim CJ, Park DJ, Tang SK, Lee JC, Xu LH, Jiang CL (2005b) Microbacterium halotolerans sp. nov., isolated from a saline soil in the west of China. Int J Syst Evol Microbiol 55:67–70

    Article  CAS  PubMed  Google Scholar 

  • Li WJ, Kroppenstedt RM, Wang D, Tang SK, Lee JC, Park DJ, Kim CJ, Xu LH, Jiang CL (2006) Five novel species of the genus Nocardiopsis isolated from hypersaline soils and emended description of Nocardiopsis salina Li et al. 2004. Int J Syst Evol Microbiol 56:1089–1096

    Article  CAS  PubMed  Google Scholar 

  • Marquez MC, Ventosa A, Ruiz-Berraquero F (1992) Phenoypic and chemotaxonomic characterization of Marinococcus halophilus. Syst Appl Microbiol 15:63–69

    Article  CAS  Google Scholar 

  • Martin S, Marquez MC, Sanchez-Porro C, Mellado E, Arahal DR, Ventosa A (2003) Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int J Syst Evol Microbiol 53:1383–1387

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Canovas MJ, Bejar V, Martinez-Checa F, Quesada E (2004a) Halomonas anticariensis sp. nov., from Fuente de Piedra, a saline-wetland wildfowl reserve in Malaga, southern Spain. Int J Syst Evol Microbiol 54:1329–1332

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Canovas MJ, Quesada E, Martinez-Checa F, del Moral A, Bejar V (2004b) Salipiger mucescens gen. nov., sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium isolated from hypersaline soil, belonging to the alpha-Proteobacteria. Int J Syst Evol Microbiol 54:1735–1740

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Checa F, Quesada E, Martinez-Canovas MJ, Llamas I, Bejar V (2005) Palleronia marisminoris gen. nov., sp. Nov., a moderately halophilic, exopolysaccharide producing bacterium belonging to the ‘Alphaproteobacteria’, isolated from the saline soil. Int J Syst Evol Microbiol 55:2525–2530

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86:155–164

    Article  CAS  PubMed  Google Scholar 

  • Meyer J (1976) Nocardiopsis dassonvillei, a new genus of the order Actinomycetales. Int J Syst Bacteriol 26:487–493

    Article  Google Scholar 

  • Murugan M, Saju KA, Michael Babu M, Thiravia RS (2011) Survey on halophilic microbial diversity of Kovalam saltpans in Kanyakumari District and its industrial applications. J Appl Pharm Science 01(05):160–163

    Google Scholar 

  • Nielsen P, Rainey FA, Outtrup H, Priest FG, Fritze D (1994) Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and the establishment of a sixth rRNA group within the genus Bacillus. FEMS Microbiol Lett 117:61–66

    Article  CAS  Google Scholar 

  • Nieto JJ, Fernandez-Castillo R, Marquez MC, Ventosa A, Quesada E, Ruiz-Berraquero F (1989) Survey of metal tolerance in moderately halophilic eubacteria. Appl Environ Microbiol 55:2385–2390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nonomura H, Ohara Y (1971) Distribution of actinomycetes in soil. X New genus and species of monosporic actinomycetes. J Ferment Technol 49:895–903

    Google Scholar 

  • Ojala JC, Jarrell WM, Menge JA, Johnson ELV (1983) Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. Agron J 75:255–259

    Article  CAS  Google Scholar 

  • Okamoto T, Taguchi H, Nakamura K, Ikenaga H, Kuraishi H, Yamasato K (1993) Zymobacter palmae gen. nov., sp. nov., a new ethanol-fermenting peritrichous bacterium isolated from palm sap. Arch Microbiol 160:333–337

    Article  CAS  PubMed  Google Scholar 

  • Olivera N, Sineriz F, Breccia JD (2005) Bacillus patagoniensis sp. nov., a novel alkalitolerant bacterium from the rhizosphere of Atriplex lampa in Patagonia, Argentina. Int J Syst Evol Microbiol 55:443–447

    Article  CAS  PubMed  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  • Oren A, Mana L (2002) Amino acid composition of bulk protein and salt relationships of selected enzymes of Salinibacter ruber, an extremely halophilic bacterium. Extremophiles 6:217–223

    Article  CAS  PubMed  Google Scholar 

  • Pond EC, Menge JA, Jarrell WM (1984) Improved growth of tomato in salinized soil by vesicular arbuscular mycorrhizal fungi collected from saline sites. Mycologia 76:74–84

    Article  Google Scholar 

  • Porras-Soriano A, Soriano-Martin ML, Porras-Piedra A, Azco’n R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359. https://doi.org/10.1016/j.jplph.2009.02.010

    Article  CAS  PubMed  Google Scholar 

  • Quesada E, Ventosa A, Rodriguez-Valera F, Megias L, Ramos-Cormenzana A (1983) Numerical taxonomy of moderate halophiles from hypersaline soils. J Gen Microbiol 129:2649–2657

    Google Scholar 

  • Quillaguaman J, Hatti-Kaul R, Mattiasson B, Alvarez MT, Delgado O (2004) Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. Int J Syst Evol Microbiol 54:721–725

    Article  CAS  PubMed  Google Scholar 

  • Regvar M, Vogel K, Irgel N, Wraber T, Hildebrandt U, Wilde P, Bothe H (2003) Colonization of pennycress (Thlaspi spp.) of the Brassicaceae by arbuscular mycorrhizal fungi. J Plant Physiol 160:615–626

    Article  CAS  PubMed  Google Scholar 

  • Ren PG, Zhou PJ (2005) Tenuibacillus multivorans gen. nov., sp. nov., a moderately halophilic bacterium isolated from saline soil in Xin-Jiang, China. Int J Syst Evol Microbiol 55:95–99

    Article  CAS  PubMed  Google Scholar 

  • Rios M, Nieto JJ, Ventosa A (1998) Numerical taxonomy of heavy metal-tolerant nonhalophilic bacteria isolated from hypersaline environments. Int Microbiol 1:45–51

    CAS  PubMed  Google Scholar 

  • Rodriguez-Valera F (1988) Characteristics and microbial ecology of hypersaline environments. In: Rodriguez-Valera F (ed) Halophilic bacteria, vol 1. CRC Press, Boca Raton, pp 3–30

    Google Scholar 

  • Rodriguez-Valera F (1993) Introduction to saline environments. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC Press, Boca Raton, pp 1–12

    Google Scholar 

  • Romanenko LA, Schumann P, Rohde M, Zhukova NV, Mikhailov VV, Stackebrandt E (2005) Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. Int J Syst Evol Microbiol 55:143–148

    Article  CAS  PubMed  Google Scholar 

  • Rosendahl CN, Rosendahl S (1991) Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of cucumber (Cucumis sativus L.) to salt stress. Environ Exp Bot 31:313–318

    Article  Google Scholar 

  • Ross IL, Alami Y, Harvey PR, Achouak W, Ryder MH (2000) Genetic diversity and biological control activity of novel species in South Australia. Appl Environ Microbiol 66:1609–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan JS, Al-Tai AM, Zhou ZH, Qu LH (1994) Actinopolyspora iraqiensis sp. nov., a new halophilic actinomycete isolated from soil. Int J Syst Bacteriol 44:759–763

    Article  Google Scholar 

  • Saqib ZA, Akhtar J, Ul-Haq MA, Ahmad I (2012) Salt induced changes in leaf phenology of wheat plants are regulated by accumulation and distribution pattern of Na+ion. Pak J Agri Sci 49:141–148

    Google Scholar 

  • Saum SH, Muller V (2008) Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies. Saline Syst 4:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlesner H, Lawson PA, Collins MD, Weiss N, Wehmeyer U, Volker H, Thomm M (2001) Filobacillus milensis gen. nov., sp. nov., a new halophilic spore-forming bacterium with Orn- D-Glu-type peptidoglycan. Int J Syst Evol Microbiol 51:425–431

    Article  CAS  PubMed  Google Scholar 

  • Schobert B, Lanyi JK (1982) Halorhodopsin is a light-driven chloride pump. J Biol Chem 257:10306–10313

    CAS  PubMed  Google Scholar 

  • Seigle-Murandi F, Guiraud P, Croize J, Falsen E, Eriksson KL (1996) Bacteria are omnipresent on Phanerochaete chrysosporium Burdsall. Appl. Environ Microbiol 62:2477–2481

    CAS  Google Scholar 

  • Shivanand P, Mugeraya G (2011) Halophilic bacteria and their compatible solutes – osmoregulation and potential applications. Curr Sci 100(10):1516–1521

    CAS  Google Scholar 

  • Smith R (1992) Legume inoculant formulation and application. Can J Microbiol 38:485–492. https://doi.org/10.1139/m92-080

    Article  Google Scholar 

  • Spring S, Ludwig W, Marquez MC, Ventosa A, Schleifer KH (1996) Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov., and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46:492–496

    Article  Google Scholar 

  • Stackebrandt E, Koch C, Gvozdiak O, Schumann P (1995) Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 45:682–692

    Article  CAS  PubMed  Google Scholar 

  • Stahl PO, Williams SE (1986) Oil shale process water affects activity of vesicular-arbuscular fungi and Rhizobium four years after application to soil. Soil Biol Biochem 18:451–455

    Article  Google Scholar 

  • Szabolcs I (1989) Salt affected soils. CRC Press Inc, Boca Raton ISBN 0-8493-4818-8

    Google Scholar 

  • Tang SK, Li WJ, Wang D, Zhang YG, Xu LH, Jiang CL (2003) Studies of the biological characteristic of some halophilic and halotolerant actinomycetes isolated from saline and alkaline soils. Actinomycetologica 17:6–10

    Article  CAS  Google Scholar 

  • Thijs S, Dillewijn PW, Sillen W, Truyens S, Holtappels M, Haen JD (2014) Exploring the rhizospheric and endophytic bacterial communities of Acer pseudoplatanus growing on a TNT-contaminated soil: Towards the development of a rhizocompetent TNTdetoxifying plant growth promoting consortium. Plant Soil 385:15–36

    Article  CAS  Google Scholar 

  • Tressner HD, Hayes JA (1971) Sodium chloride tolerance of terrestrial fungi. Appl Microbiol 22:210–213

    Google Scholar 

  • Tripathi AK, Mishra BM, Tripathy P (1998) Salinity stress responses in the plant growth promoting rhizobacteria, Azospirillum spp. J Biosci 23:463–471

    Article  CAS  Google Scholar 

  • Trivedi R, Arora S (2013) Characterization of acid and salt tolerant Rhizobium sp. isolated from saline soils of Gujarat. Int Res J Chem 3(3):8–13

    Google Scholar 

  • Ventosa A, Ramos-Cormenzana A, Kocur M (1983) Moderately halophilic gram-positive cocci from hypersaline environments. Syst Appl Microbiol 4:564–570

    Article  CAS  PubMed  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol. Mol Biol Rev 62:504–544

    CAS  Google Scholar 

  • Ventosa A, Sanchez-Porro C, Martin S, Mellado E (2005) Halophilic archaea and bacteria as a source of extracellular hydrolytic enzymes. In: Gunde-Cimerman A, Oren A, Plemenitas A (eds) Adaptation of life at high salt concentrations in archaea, bacteria and eukarya. Springer, Heidelberg, pp 337–354

    Chapter  Google Scholar 

  • Wagner G, Hartmann R, Oesterhelt D (1978) Potassium uniport and ATP synthesis in Halobacterium halobium. Eur J Biochem 89:169–179

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598

    Article  CAS  PubMed  Google Scholar 

  • Wilde P, Manal A, Stodden M, Sieverding E, Hilderbrandt U, Bothe H (2009) Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Env Microbiol 11:1548–1561

    Article  Google Scholar 

  • Yadav RS, Mahatma MK, Thirumalaisamy PP, Meena HN, Bhaduri D, Arora S, Panwar J (2017) Arbuscular Mycorrhizal Fungi (AMF) for sustainable soil and plant health in salt-affected soils. In: Sanjay A, Singh AK, Singh YP (eds) Bioremediation of salt affected soils: an Indian perspective. Springer, Switzerland, pp 133–156

    Chapter  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1216

    Article  CAS  PubMed  Google Scholar 

  • Yang LF, Jiang JQ, Zhao BS, Zhang B, Feng DQ, Lu WD, Wang L, Yang SS (2006) A Na+/H+ antiporter gene of the moderately halophilic bacterium Halobacillus dabanensis D-8T: cloning and molecular characterization. FEMS Microbiol Lett 255:89–95

    Article  CAS  PubMed  Google Scholar 

  • Yildirim E, Taylor AG (2005) Effect of biological treatments on growth of bean Plants under Salt Stress. Annu Rep Bean Improv Coop 48:176–177

    Google Scholar 

  • Yoon JH, Weiss N, Lee KC, Lee IS, Kang KH, Park YH (2001) Jeotgalibacillus alimentarius gen. nov., sp. nov., a novel bacterium isolated from jeotgal with L-lysine in the cell wall, and reclassification of Bacillus marinus Rueger 1983 as Marinibacillus marinus gen. nov., comb. nov. Int J Syst Evol Microbiol 51:2087–2093

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Kang KH, Park YH (2002) Lentibacillus salicampi gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt field in Korea. Int J Syst Evol Microbiol 52:2043–2048

    CAS  PubMed  Google Scholar 

  • Yoon JH, Kim IG, Kang KH, Oh TK, Park YH (2003) Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 53:1297–1303

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Oh TK, Park YH (2004) Transfer of Bacillus halodenitrificans Denariaz et al. 1989 to the genus Virgibacillus as Virgibacillus halodenitrificans comb. nov. Int J Syst Evol Microbiol 54:2163–2167

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Matsubara K, Kudo T, Horikoshi K (1991) Actinopolyspora mortivallis sp. nov., a moderately halophilic actinomycete. Int J Syst Bacteriol 41:15–20

    Article  CAS  Google Scholar 

  • Yumoto I, Yamaga S, Sogabe Y, Nodasaka Y, Matsuyama H, Nakajima K, Suemori A (2003) Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and mhydroxybenzoate. Int J Syst Evol Microbiol 53:1531–1536

    Article  CAS  PubMed  Google Scholar 

  • Yumoto I, Hirota K, Goto T, Nodasaka Y, Nakajima K (2005) Bacillus oshimensis sp. nov., a moderately halophilic, non-motile alkaliphile. Int J Syst Evol Microbiol 55:907–911

    Article  CAS  PubMed  Google Scholar 

  • Zahran HH, Räsänen LA, Karsisto M, Lindström K (1994) Alteration of lipopolysaccharide and protein profiles in SDSPAGE of rhizobia by osmotic and heat stress. World J Microbiol Biotechnol 10:100–105

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Wang Y, Ruan J (1998) Reclassification of Thermomonospora and Microtetraspora. Int J Syst Bacteriol 48:411–422

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arora, S., Vanza, M.J. (2018). Halophilic Microbial Ecology for Agricultural Production in Salt Affected Lands. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews 33. Sustainable Agriculture Reviews, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-99076-7_7

Download citation

Publish with us

Policies and ethics